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ABSTRACT 

Conventional reliability analysis methods assume that a simulation model is able to 

represent the real physics accurately.  However, this assumption may not always hold as 

the simulation model could be biased due to simplifications and idealizations.  Simulation 

models are approximate mathematical representations of real-world systems and thus 

cannot exactly imitate the real-world systems.  The accuracy of a simulation model is 

especially critical when it is used for the reliability calculation.  Therefore, a simulation 

model should be validated using prototype testing results for reliability analysis.  However, 

in practical engineering situation, experimental output data for the purpose of model 

validation is limited due to the significant cost of a large number of physical testing.  Thus, 

the model validation needs to be carried out to account for the uncertainty induced by 

insufficient experimental output data as well as the inherent variability existing in the 

physical system and hence in the experimental test results.  Therefore, in this study, a 

confidence-based model validation method that captures the variability and the uncertainty, 

and that corrects model bias at a user-specified target confidence level, has been developed.  

Reliability assessment using the confidence-based model validation can provide 

conservative estimation of the reliability of a system with confidence when only 

insufficient experimental output data are available. 

Without confidence-based model validation, the designed product obtained using 

the conventional reliability-based design optimization (RBDO) optimum could either not 

satisfy the target reliability or be overly conservative.  Therefore, simulation model 

validation is necessary to obtain a reliable optimum product using the RBDO process.    In 

this study, the developed confidence-based model validation is integrated in the RBDO 

process to provide truly confident RBDO optimum design.  The developed confidence-

based model validation will provide a conservative RBDO optimum design at the target 

confidence level.  However, it is challenging to obtain steady convergence in the RBDO 
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process with confidence-based model validation because the feasible domain changes as 

the design moves (i.e., a moving-target problem).  To resolve this issue, a practical 

optimization procedure, which terminates the RBDO process once the target reliability is 

satisfied, is proposed.  In addition, the efficiency is achieved by carrying out deterministic 

design optimization (DDO) and RBDO without model validation, followed by RBDO with 

the confidence-based model validation.  Numerical examples are presented to demonstrate 

that the proposed RBDO approach obtains a conservative and practical optimum design 

that satisfies the target reliability of designed product given a limited number of 

experimental output data. 

Thus far, while the simulation model might be biased, it is assumed that we have 

correct distribution models for input variables and parameters.  However, in real practical 

applications, only limited numbers of test data are available (parameter uncertainty) for 

modeling input distributions of material properties, manufacturing tolerances, operational 

loads, etc.  Also, as before, only a limited number of output test data is used.  Therefore, a 

reliability needs to be estimated by considering parameter uncertainty as well as biased 

simulation model.  Computational methods and a process are developed to obtain 

confidence-based reliability assessment.  The insufficient input and output test data induce 

uncertainties in input distribution models and output distributions, respectively.  These 

uncertainties, which arise from lack of knowledge – the insufficient test data, are different 

from the inherent input distributions and corresponding output variabilities, which are 

natural randomness of the physical system. 
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PUBLIC ABSTRACT 

An engineering system has inherent variabilities induced by manufacturing 

processes, operating conditions, etc.  To deal with these variabilities, the reliability, which 

is defined as the probability of success of required performance under the specified 

condition during the design life, is measured.  In order to carry out reliability analysis for 

an engineering system, engineers often use simulation models that can predict the behavior 

of real-physics with less time and cost.  However, the simulation models are simplifications 

of real-world systems because they involve various idealizations and assumptions.  In other 

words, a simulation model could be biased and thus may not accurately represent the real-

world system.  Accordingly, accurate reliability cannot be obtained using the biased 

simulation model.  Therefore, the simulation model should be validated using prototype 

testing results for reliability analysis.  However, in practical engineering applications, 

experimental output data for the purpose of model validation is limited due to the 

significant cost of product testing.  Therefore, model validation for reliability analysis 

needs to account for the uncertainty induced by insufficient experimental output data.  For 

this reason, in this study, a confidence-based model validation method that captures the 

uncertainty and corrects model bias has been developed to obtain a validated simulation 

model.  The validated simulation model obtained from the confidence-based model 

validation will provide conservative estimation of the reliability of system with confidence 

even with insufficient experimental output data. 

Furthermore, simulation model validation is necessary to obtain a reliable optimal 

product design that satisfies all requirements and specifications set by designers.  

Therefore, the developed confidence-based model validation is integrated with the 

reliability-based design optimization (RBDO) process to obtain truly reliable and optimal 

product design that satisfies target reliability when it is manufactured.  The developed 

model validation helps RBDO to obtain a conservative RBDO optimum design at the target 
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confidence level for insufficient experimental output data.  The RBDO with model 

validation may require experimental output data at a number of different design points 

during the optimization process.  Thus, in this study, a practical optimization procedure is 

proposed, which reduces the number of prototype testing required.  We demonstrate that 

the proposed RBDO approach obtains a conservative and efficient optimum design that 

truly satisfies the target reliability even using a limited number of experimental output data.  

Thus far, it is assumed that we have correct distribution models for input variables 

and parameters.  However, in real practical applications, true input distribution models, 

which require a large number of input test data, may not be obtainable (i.e., parameter 

uncertainty).  Therefore, the reliability needs to be estimated by considering parameter 

uncertainty, insufficient output test data, as well as biased simulation model.  An advanced 

confidence-based reliability assessment method is developed, which combines both 

uncertainties due to limited number of input/output data and the biased model, and 

estimates confidence-based reliability at the user-specified target confidence level.  The 

proposed confidence-based reliability assessment method can estimate the reliability of 

complex mechanical system with appropriate conservativeness, using limited numbers of 

input and output test data; and simulation model. 
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CHAPTER 1                                                                                  

INTRODUCTION 

This research presents a new model validation methodology that can be used for 

confidence-based reliability assessment and reliability-based design optimization 

(RBDO).  The developed model validation method is integrated into the RBDO process 

to obtain a reliable and optimized design that satisfies target reliability when 

manufactured.  The developed confidence-based model validation deals with practical 

prototype testing when only a small number testing is available due to the significant cost 

of physical testing.  The developed confidence-based reliability assessment accounts for 

insufficient input data due to limited number of input testing as well as small number of 

experimental output data due to expensive cost of full-scale prototype testing.   

For the simulation model validation, the proposed confidence-based model 

validation takes into consideration the uncertainty induced by a limited number of 

experimental output data.  This uncertainty induces uncertain predicted output probability 

density function (PDF).  In other words, there are many candidates of predicted output 

PDF that could represent the limited number of experimental output data.  Accordingly, a 

reliability (probability of failure) of the system, which is calculated based on the 

predicted output PDF, becomes uncertain.  To handle the uncertainty induced by 

insufficient data, a confidence-based target output distribution that estimates the 

probability of failure conservatively, needs to be obtained.  To do that, the uncertainty 

distribution of the probability of failure is quantified using Bayesian analysis.  Then, a 

confidence-based probability of failure that satisfies the user-specified target confidence 

level on the uncertainty distribution is selected.  The confidence-based target output 

distribution is the candidate distribution which produces the confidence-based probability 

of failure.  After that, model validation optimization, which corrects model bias, is 

carried out to match the current biased simulation output PDF to the confidence-based 
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target output distribution.  Then, confidence-based model validation can be used for 

conservative reliability assessment, which is integrated in the RBDO process to obtain a 

conservative RBDO design.  Accordingly, the designer can have confidence that the 

RBDO design obtained using confidence-model validation would satisfy the target 

probability of failure with certain probability level – target confidence level. 

In Section 1.1, background information for a better understanding of the proposed 

study is provided.  In particular, it describes the type and source of uncertainty in Section 

1.1.1, RBDO in Section 1.1.2, and model verification and validation in Section 1.1.3.  

Section 1.2 introduces the objective of the proposed study, and the organization of the 

thesis is provided in Section 1.3. 

 

1.1 Background and Motivation 

1.1.1 Type and Source of Uncertainties 

Uncertainties in computer simulation can be classified into two major types (Klir 

& Folger, 1988; Oberkampf, Helton & Sentz, 2001; Oberkampf & Roy, 2010).  Aleatory 

uncertainty is the uncertainty due to inherent randomness, which is also referred to as 

stochastic uncertainty, variability and inherent uncertainty.  The fundamental nature of 

aleatory uncertainty is randomness.  For discrete variables, the randomness is 

parameterized by the probability of each possible value.  For continuous variables, the 

mathematical representation of the randomness is a probability distribution.  Epistemic 

uncertainty, the second type, is the uncertainty due to lack of knowledge, which is also 

referred to as reducible uncertainty and knowledge uncertainty.  Its fundamental source is 

incomplete information or knowledge of any type that is related to the system of interest 

or its simulation.  For example, lack of knowledge can include a modeling issue for the 

physical system and experimental output data used for model validation.  It is common to 

refer to epistemic uncertainty simply as uncertainty and aleatory uncertainty as 
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variability.  In this study, we clearly distinguish between variability (i.e., aleatory 

uncertainty) and uncertainty (i.e., epistemic uncertainty).  As the fundamental nature of 

each is different, different approaches are required to consider and characterize each. 

Various sources of variabilities and uncertainties can occur in computational 

analysis and simulation modeling.  Kennedy and O'Hagan (2001) have identified where 

they come from.  The first source is parametric variability which is the randomness of the 

input variable.  The thickness of a steel plate that can vary randomly within a tolerance 

could be an example.  It might not be exactly designed and constructed due to 

manufacturing error.  This inherent variability in the engineering system is taken care of 

by calculating the reliability of the system in RBDO constraints, which will be explained 

in detail in Section 1.1.2.  Another source is parameter uncertainty, which comes from 

input variables whose exact values (or probabilistic distribution) are unknown.  The 

parameter uncertainty can occur in two situations.  First, we may not be able to carry out 

complete coupon testing to identify probability distribution of input parameter such as 

friction coefficient or other physical/material properties.  In this case, an unknown input 

parameter for which only the reference value or the manufacturer’s guess is available is 

defined as a calibration parameter.  Thus statistical properties such as mean and standard 

deviation of the calibration parameter become uncertain.  Second, we may be able to 

carry out a coupon test to identify certain parameters even though testing cannot be done 

many times.  Then the uncertainty from lack of input test data needs to be considered.  

 The other source can be structural uncertainty (model bias or discrepancy) that is 

the fundamental inability of simulation to reproduce the real physical behavior because of 

simplification and idealization.  Furthermore, there is numerical uncertainty which is a 

numerical error in the implementation of the computer simulation.  However, simulation 

is often assumed to be numerical error-free.  Another source is experimental uncertainty 

(or observation error) which is an error in measuring the experimental responses.  This 

can possibly be noticed by repeating measurements many times.  Among those various 
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uncertainties, (1) parameter uncertainty, (2) input variability resulting in output 

variability, and (3) model bias are considered in this study.  In addition, there exists the 

uncertainty that comes from insufficient experimental (output) data, which is taken into 

consideration in the developed method. 

 

1.1.2 Reliability-Based Design Optimization 

Deterministic design assumes that all design variables, parameters and system 

variables are deterministic values.  In other words, there is no variability in design 

variables and parameters.  However, engineering systems have variabilities due to 

manufacturing imperfections (e.g., dimension and material properties) and natural 

environmental change (e.g., wave load and wind speed).  Moreover, these variabilities 

propagate the performance measure, which results in output variability.  Thus, 

deterministic design optimization (DDO) methods are not usually suitable for the 

engineering design process because they do not account for inherent variability in input 

and the resulting output variability.  As a result, the DDO optimum designs are not 

reliable (typically only 50% reliable).  To capture the input and output variability in the 

design process, RBDO should be used to obtain an optimal design that satisfies the 

desired reliability level (i.e., the target probability of failure) under the variabilities.  The 

input variability is embodied using an input joint PDF, and the output variability resulting 

from the input variability is obtained using the input joint PDF and simulation model.  To 

capture the output variability, the safety of the system is measured using the probability 

of failure that is the probabilistic constraint in the RBDO formulation.     

Methodologies to evaluate the reliability of a system in RBDO can be categorized 

two ways: sensitivity-based reliability analysis using most-probable point (MPP), and 

sampling-based reliability analysis.  In the sensitivity-based reliability analysis, there 

have been various approaches such as the first-order reliability method (FORM) 
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(Chiralaksanakul & Mahadevan, 2005; Haldar & Mahadevan, 2000; Hasofer & Lind, 

1974; Tu, Choi & Park, 1999, 2001), the second-order reliability method (SORM) 

(Haldar & Mahadevan, 2000; Hohenbichler & Rackwitz, 1988) and the dimension 

reduction method (DRM) (Lee, Choi, Du & Gorsich, 2008; Lee, Choi & Gorsich, 2010; 

Rahman & Wei, 2006, 2008).  All sensitivity-based approaches do require the 

sensitivities of the performance functions to search MPP.  FORM and SORM compute 

the probability of failure by approximating the performance function using the first- and 

second-order Taylor series expansion at the MPP, respectively.  The DRM represents a 

multi-dimensional function using the sum of one-dimensional functions.  Even though 

sensitivity-based reliability analysis is very popular, it may not be applicable for some 

engineering applications where sensitivity information is not available due to implicit, 

highly nonlinear and complicated performance function. 

On the other hand, sampling-based reliability analysis is useful for many 

applications where the sensitivity of a performance function cannot be easily obtained 

(Lee, Choi & Zhao, 2011a; Lee, Choi, Noh, Zhao & Gorsich, 2011b).  In the sampling-

based approach, reliability is usually calculated using Monte Carlo simulation (MCS) 

(Rubinstein & Kroese, 1981).  MCS uses a very large number (e.g., one million) of 

samples.  Thus, direct use of MCS requires a huge number of computer-aided 

engineering (CAE) simulations, such as Finite Element Analysis (FEA).  That leads to an 

extremely expensive computational cost.  To resolve this issue, surrogate models are 

used, which can reduce computational time by using a small number of CAE analyses 

(Shi, Yang & Zhu, 2012; Song, Choi & Lamb, 2013a; Song, Choi, Lee, Zhao & Lamb, 

2013b; Zhao, 2011; Zhao, Choi & Lee, 2011).  If accurate surrogate models are available, 

the probability of failure and its sensitivity can be accurately obtained using MCS, and 

the prediction using surrogate models does not involves the approximation of constraints.  

In this study, the sampling-based method using surrogate models has been used to 

evaluate reliability and sensitivity for RBDO. 



www.manaraa.com

6 
 

 
 

1.1.3 Model Verification and Validation 

Usually product development and design require a number of hardware prototypes 

and tests of the designed product.  For this reason, computer simulation plays an 

increasingly important role in various engineering design projects with the rapid increase 

of computational power.  A simulation model predicts the response of a system and is 

used to design the product with reduced time and costs.  However, an accurate simulation 

model is not easy to obtain because the simulation model is an approximate imitation of 

real systems, including idealizations and simplifications.  As a consequence, confidence 

of the simulation model needs to be verified and validated using rigorous hardware 

testing.  The verified and validated simulation model will be able to describe the 

experimental outcomes of the physical system.   

Various communities have recognized the importance of model verification and 

validation (V&V) procedure in simulation modeling, and have published their own 

definitions of V&V.  In conformity with the Institute of Electrical and Electronic 

Engineering (IEEE) (IEEE, 1984, 1990), verification is defined as “The process of 

evaluating the products of a software development phase to provide assurance that they 

meet the requirements defined for them by the previous phase.”  Validation, on the other 

hand, is defined as “the process of testing a computer program and evaluating the results 

to ensure compliance with specific requirements.”  It is clear that the IEEE focuses on 

V&V of computer program or software.  On the other hand, the definitions of V&V 

provided by the US department of Defense (DoD), the American Institute of Aeronautics 

and Astronautics (AIAA) and the American Society of Mechanical Engineers (ASME) 

communities are more related to a model that is supposed to depict a physical system 

(AIAA, 1998; ASME, 2006; DoD, 1994).  Verification is defined by the ASME 

Committee as “the process of determining that a computational model accurately 

represents the underlying mathematical model and its solution.”  The definition of 

verification defined by DoD and AIAA is also very similar to the one defined by the 



www.manaraa.com

7 
 

 
 

ASME.  In addition, the definition of validation accepted by DoD, AIAA and ASME is 

“the process of determining the degree to which a model is an accurate representation of 

the real world from the perspective of the intended uses of the model.”  It is noted that the 

definition of validation by DoD, AIAA and ASME is an emphasis on measuring the 

accuracy of a model.  

Figure 1.1 shows traditional model verification and validation activities.  In this 

study, it is assumed that model verification can be successfully completed because it can 

be easily done by refining the model and correcting the computer code.  We have more 

concern about model validation, which is difficult as it incorporates experiments that 

cannot be done many times.  Usually actual prototyping and testing are very expensive; 

thus, only a limited number of experimental output data can be used for the purpose of 

model validation.  As for the activity of model validation, there are several aspects that 

different researchers address.  The first aspect is assessing the accuracy of a simulation 

model by comparing it with a set of experimental output data.  In some literatures, model 

accuracy has been quantitatively estimated using a validation metric (Chen, Xiong, Tsui 

& Wang, 2006; Ferson, Oberkampf & Ginzburg, 2008; Oberkampf & Barone, 2006).  

The second aspect is quantifying the uncertainties (i.e., model bias and calibration 

parameter, as explained in Section 1.1.1) in the simulation model to improve its 

predictive capability.   

These works are useful for model analysts.  However, from the design engineer’s 

point of view, they do not offer enough because they do not consider the reliability of the 

designed product.  The validated simulation model may not guarantee an accurate 

prediction unless a large number of tests are provided for the validation.  Because the 

accuracy of the simulation model is very important when we evaluate the reliability of the 

system.  This study is particularly focused on developing a new model validation 

framework that can be applied for reliability assessment and reliability-based design 

optimization with insufficient experimental output data.  The developed method does not 



www.manaraa.com

8 
 

 
 

seek to find an accurate model by directly matching a simulation model and experimental 

output data.  Since experimental output data is lacking, we cannot even measure a correct 

accuracy between simulation model and the data.  Thus, the confidence concept is 

introduced in developed model validation without looking for accurate simulation model.  

Developed model validation conservatively estimates a probability of failure so that a 

user can have confidence that the designed product using a validated simulation model 

would be reliable. 

 

 

 

Figure 1.1 Role of Conventional Model Verification and Valdation 
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1.2 Objective of Proposed Study 

The main goal of this thesis is to develop a methodology of confidence-based 

reliability assessment of the design by incorporating model validation using insufficient 

experimental output data.  The RBDO method uses a simulation model without 

incorporating prototype test results to obtain an RBDO optimum design.  Accordingly, a 

product designed using the conventional RBDO methods may not be reliable or overly-

designed.  The developed confidence-based model validation has to be integrated with 

the RBDO process in order to provide a reliable product design.   

Specific research objectives are:  

1. To develop a new model validation method that can be used for reliability 

analysis by taking account the uncertainty induced by insufficient experimental 

output data.  The new model validation has several novel features.  First, the 

model validation proposed in this study is concerned with the insufficient 

experimental output data.  Hence, the new model validation method handles the 

uncertainty due to insufficient test data, as well as output variabilities caused by 

input variabilities.  Due to the uncertainty, the predicted output PDF and 

probability of failure become uncertain quantities.  Using a sampling-based 

Bayesian approach, the uncertainty distribution of the probability of failure, which 

contains the uncertainty induced by the insufficient test data, can be quantified.   

Second, the proposed method enables the user to control confidence level 

(i.e., conservativeness) in estimating reliability.  In the presence of the 

uncertainty, we cannot determine predicted output PDF with certainty.  For this 

reason, we need to find a conservatively predicted output PDF – a target output 

PDF – to which the simulation model will be matched.  Accordingly, the 

validated simulation model can have a confidence that estimated probability of 

failure would be larger than the true probability of failure.  At the same time, the 
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target output PDF should not be overly conservative to obtain a cost-effective 

optimum design.  To do that, a confidence-based target output PDF and 

probability of failure are selected at a user-specified target confidence level.  By 

controlling the target confidence level, users can control the confidence level of 

estimated reliability.    

2. To develop a new RBDO method using confidence-based model validation that 

can provide truly reliable and conservative RBDO optimum design even with a 

limited number of experimental output data.  When the model validation is carried 

out during a design optimization process, the feasible domain (i.e., solution space) 

changes as model bias is corrected at the changed design point.  This results in a 

moving-target problem, which can cause difficulty in convergence in the 

optimization iteration.  As a result, the RBDO optimum design may not be easily 

obtained.  For this reason, a practical RBDO procedure using confidence-based 

model validation is proposed in this study.  The proposed RBDO method requires 

experimental output data only at a few design configurations.  Hence, the 

proposed RBDO can provide a conservative, reliable and yet cost-effective design 

without requiring a large number of different prototype (design) tests.  

3. To develop a new reliability assessment methodology that can provide 

conservative reliability estimation with appropriate confidence level for practical 

engineering applications.  As explained earlier, a large number of prototype 

testing is not viable.  For the same reason, only a limited number of coupon or 

element testing is carried out.  Hence, accurate input distribution model is not 

available since there exists the uncertainty induced by insufficient number of 

input data.  Therefore, the developed reliability assessment should account for 

insufficient input data due to a limited number of coupon or element testing as 

well as insufficient experimental output data.  The proposed method can provide 

conservative reliability estimation by providing appropriate confidence level. 
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1.3 Organization of Thesis 

 

Chapter 2 presents literature survey of conservative RBDO approach under the 

uncertainty and model validation approach used for design optimization, which are the 

motivation for the proposed method.  In addition, the limitations of previous works are 

described.  

Chapter 3 reviews conventional RBDO approach which does not use model 

validation, and specifically focuses on how to perform sampling-based reliability analysis 

and RBDO which are used in this study.  

Chapter 4 proposes a new confidence-based model validation method that enables 

a conservative assessment of the reliability of an engineering system for a practical 

experimental situation.  To deal with a practical situation, the uncertainty induced by 

insufficient experimental output data is considered.  First, the uncertainty distribution of 

the probability of failure is quantified using sampling-based Bayesian analysis.  Second, 

the confidence-based target output PDF and probability of failure are obtained at the 

user-specified target confidence level.  Third, model validation optimization is carried out 

for model bias correction to obtain a validated simulation model (i.e., simulation output 

PDF).  Finally, sampling-based reliability analysis is performed using the validated 

simulation output PDF, which yields the conservative estimation of reliability for 

insufficient experimental output data.  

Chapter 5 demonstrates performance of the proposed confidence-based model 

validation method using various numerical tests.  The developed method is applied to a 

highly nonlinear two-dimensional mathematical example.  First, the target confidence 

level is verified by carrying out repeated validation tests with different sets of 

experimental output data.  Second, the convergence of the proposed validation method is 

shown with increasing the data size.  Third, a case study is carried out for different types 

of biased simulation model. 
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Chapter 6 presents reliability-based design optimization using confidence-based 

model validation.  The challenge of RBDO with model validation is identified.  To 

resolve that, a practical RBDO procedure using confidence-based model validation is 

proposed and is tested using the 2-D mathematical example. 

Chapter 7 presents confidence-based reliability assessment for industry practical 

situation, which handles insufficient input data, as well as insufficient experimental 

output data that is considered in Chapter 4.  In the presence of the limited number of 

input data, true input distribution model cannot be obtained.  First, the uncertainty 

quantification of input model is carried out.  Second, the uncertainty induced by limited 

number of input data is combined with the uncertainty due to limited number of output 

data.  To do that, a hierarchal Bayesian model is formulated to quantify the uncertainty 

distribution of reliability.  After that, confidence-based reliability is selected at the target 

confidence level in similar way as described in Chapter 4.     

Chapter 8 presents the conclusions of the study and future works to be carried out 

to enhance the proposed methods. 
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CHAPTER 2                                                                                                 

LITERATURE SURVEY 

2.1 Conservative RBDO Approaches under Uncertainty 

Conventional reliability analysis and RBDO methods require (1) an accurate input 

probabilistic model (i.e., input joint PDF) and (2) an accurate simulation model.  

However, both the accurate input joint PDF and the accurate simulation model cannot be 

achieved in real engineering applications.  The accurate input joint PDF can be obtained 

only when enough coupon or element tests are available; the accurate simulation model is 

not achievable because the simulation model is merely a mathematical approximation of 

physical behavior (the second issue will be discussed in Section 3.3.2).  However, due to 

expensive cost, only a limited number of input data is available in real problems.  In the 

presence of the uncertainty due to the limited number of input data, the conservative 

design can be achieved by estimating a probability of failure that is larger than the true 

value.  Picheny, Kim, and Haftka (2010) addressed the danger of underestimating the 

probability of failure due to the limited number of data; they developed a conservative 

estimation of probability of failure using a bootstrap method assuming the input 

distribution type is known.  In this context, there have been many research efforts to 

achieve conservative RBDO design in compensation for the limited input data.  Gunawan 

and Papalambros (2006) used beta distribution to model the distribution of reliability and 

carried out multi-objective RBDO that maximizes the overall confidence level of the 

reliability while minimizing cost.  Youn and Wang (2008) sought the worst case from the 

distribution of reliability, which is the beta distribution, and defined the worst case as the 

target reliability for RBDO.  Their work has been followed by Choi, An, and Won 

(2010).  Reliability-based design optimization with an input statistical model with 

standard deviation and correlation coefficient that are adjusted using confidence level of 
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them has been proposed; it fully covers the target reliability region for RBDO (Noh, 

Choi, Lee, Gorsich & Lamb, 2011a; Noh, Choi, Lee, Gorsich & Lamb, 2011b).  Cho et 

al. (2016) used a confidence level of probability of failure as a probabilistic constraint for 

conservative RBDO.  However, the aforementioned methods consider insufficient input 

data, not the experimental (output) data, and assume the simulation model is accurate – 

no model bias.  Thus, the methods are not valid for the case of a biased simulation model.  

Therefore, physical experiments should be incorporated to validate the simulation model.  

Hence, this thesis deals with experimental (output) data to validate a simulation model for 

RBDO.  

 

2.2 Model Validation Approaches 

 

There have been various research efforts to quantify the uncertainties involves in 

simulation model (explained in Section 1.1.1) to improve the prediction capability of the 

simulation model.  Some works consider either parameter uncertainty (Drignei, 

Mourelatos, Kokkolaras, Pandey & Koscik, 2012a; Drignei, Mourelatos, Pandey & 

Kokkolaras, 2012b; Loeppky, Bingham & Welch, 2006; Xiong, Chen, Tsui & Apley, 

2009; Youn, Jung, Xi, Kim & Lee, 2011) or model bias (Jiang, Chen, Fu & Yang, 2013; 

Pan, Xi & Yang, 2016; Xi, Fu & Yang, 2013) to correct the simulation model.  Firstly, 

aforementioned parameter calibration adjusts either the parameter for a deterministic 

problem or the statistical properties of the parameter under the variability to match the 

simulation model to experimental output data.  Secondly, model bias is approximated 

inside of the entire design space and is added to simulation model to capture the 

discrepancy between the simulation model and the experimental output data.  Though 

there have been attempts to consider both the parameter uncertainty and the model bias, it 

is not easy to distinguish the effect of each of them on the output (Arendt, Apley & Chen, 
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2012a; Arendt, Apley, Chen, Lamb & Gorsich, 2012b; Higdon, Nakhleh, Gattiker & 

Williams, 2008).  As for design application, parameter calibration has been 

simultaneously performed within the local domain in the DDO procedure.  Experimental 

output data is required at every design iteration to adjust calibration parameters (Drignei 

et al., 2012a; Drignei et al., 2012b).  However, deterministic design is not useful from the 

view point of a reliable product.   

This thesis addresses the important research topic of developing model validation 

for the RBDO process, which can reduce error in designing a reliable product.  There has 

been limited research on model validation for RBDO (Jiang et al., 2013; Pan et al., 2016).  

The model bias has been approximated over the entire design space, and then the 

simulation model with model bias correction has been used for the RBDO process.  

However, this method requires experimental output data over the entire design space to 

estimate model bias.  In other words, it requires product testing at a large number of 

design configurations; therefore, it is not practical.  Moreover, the RBDO optimum 

designs may not satisfy the target probability of failure because the true probability of 

failure cannot be accurately evaluated unless sufficiently large number of experimental 

output data is provided at each design configuration.  Thus, they are not appropriate for 

RBDO with a limited number of experimental output data. 

Furthermore, even though we have the accurate input distribution model, we do 

not know the exact input variable values that correspond to the experimental output data; 

only the mean value of the input is known.  This thesis handles this situation, which is 

associated more often with real practical applications.  This differs from the case that 

conventional model validation approaches deal with. 
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CHAPTER 3                                                                                            

CONVENTIONAL RELIABILITY-BASED DESIGN OPTIMIZATION USING 

SAMPLING-BASED RELIABILITY ANALYSIS 

This chapter describes how to carry out RBDO using sampling-based reliability 

analysis.  As explained in Section 1.1.2, sampling-based reliability analysis is useful for 

engineering applications in which accurate sensitivities of performance function are not 

available.  Therefore, this thesis uses sampling-based RBDO.  Because existing 

sampling-based RBDO methods assume that simulation is accurate and do not 

incorporate it with experimental output data, it is referred to as conventional RBDO. 

 

3.1 Conventional RBDO Formulation 

 

This section explains the conventional RBDO approach which does not perform a 

model validation.  The mathematical formulation of a conventional RBDO problem is 

expressed as 

 

 

   

minimize Cost

subject to 0 , 1, ,

, and

i i

Target

F i F

L U NDV NRV

P P G P i NC     

   

d

d x

d d d d x

, (3-1)                                                    

 

where d = µ(xNDV) is the design variable vector, which is the mean value of the NDV-

dimensional random variable vector xNDV=[x1, x2,…, xNDV]T, x is the NRV-dimensional 

random input variable vector, Gi(x) is the performance function (obtained using 

simulation model) for ith probabilistic constraint  
iFP d , 

i

Target

FP  is the target probability 

of failure for the ith probabilistic constraint, and NC, NDV and NRV are the number of 

probabilistic constraints, design variables, and input random variables, respectively.  It is 



www.manaraa.com

17 
 

 
 

noted that Gi(x) can be evaluated using CAE simulation (simulation output) because 

analytical expression of Gi(x) is usually unknown.  Thus, in conventional RBDO, Gi(x) 

may not be accurate because CAE simulation involves idealizations and assumptions.  In 

other words, a simulation model could underestimate or overestimate the true probability 

of failure.  Accordingly, the conventional RBDO optimum may lead to unreliable design 

or overly conservative design.  This issue will be discussed and a new model validation 

for RBDO will be proposed in Chapters 4, 5 and 6.  

 

3.2 Sampling-Based RBDO 

 

This section explains sampling-based RBDO.  In sampling-based RBDO, the 

probabilistic constraint is calculated using MCS and its responses evaluated using 

surrogate models, which will be explained in Section 3.2.1.  Furthermore, the sensitivity 

of the performance function is not required to evaluate the sensitivity of the probabilistic 

constraint.  The sensitivity calculation of the probabilistic constraint is described in 

Section 3.2.2.  

3.2.1 Sampling-Based Reliability Analysis 

A probability of failure, denoted by PF, is defined using a multi-dimensional 

integral as 

 

       
F

NRV
F

F FP P f d I f d



    x Xx x x x x x , (3-2)                                                    

 

where x = [x1, x2,…, xNRV]T is a random input variable vector, fx(x) is an input joint PDF, 

and ΩF is the failure domain that is defined by   : 0F G  x x .  𝐼Ω𝐹(𝐱) is the 

indicator function which is defined as 
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In most engineering applications, Eq. (3-2) cannot be analytically evaluated because 

performance measure G(x) is usually nonlinear and the input joint PDF does not follow 

Gaussian.  To tackle this issue, sampling-based reliability analysis, which calculates the 

probability of failure using MCS and the surrogate models, can be used.  Thus, to 

compute the probability of failure in Eq. (3-2), MCS samples, generated at a given design 

and following the input joint PDF, need to be evaluated by simulation output responses 

G(x).  However, direct use of MCS requires a huge number of CAE simulations to 

evaluate reliability, which leads to expensive computational cost.  To resolve this issue, 

surrogate models need to be implemented for the calculation of the probability of failure.  

In this study, the dynamic kriging (DKG) method (Song et al., 2013a; Zhao et al., 2011), 

which is one of the most accurate surrogate model methods (Sen, Davis, Jacobs & 

Udaykumar, 2015; Volpi et al., 2015), has been used.  Then the probability of failure in 

Eq. (3-2) can be approximated using MCS method as 

 

    
1

1
F

nMCS
k

F F

k

P P I
nMCS





   x x , (3-4)                                                    

 

where nMCS is the number of MCS samples, and x(k) is the kth realization of x. 

 

3.2.2 Stochastic Sensitivity Analysis 

Consider the derivative of a probabilistic response h(µ), such as a probability of 

failure or statistical moments with respect to µi.  For the sensitivity analysis, the 
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following four regularity conditions are required (Rahman, 2009; Rubinstein & Shapiro, 

1993). 

1. Input Joint PDF fx(x; µ) is continuous. 

2. The mean 
i i   , i = 1,…,N, where Μi is an open interval on . 

3. The partial derivative  ; / if  x x μ  exists and is finite for all x and µi.  In 

addition, h(µ) is a differential function of µ. 

4. There exists a Lebesgue integrable dominating function r(x) such that  
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for all µ. 

When the above four conditions are satisfied, the partial derivative of probability of 

failure in Eq. (3-2) with respect to µi can be calculated as (Lee et al., 2011a; Lee et al., 

2011b) 
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where E[•] represents the expectation operator.  Here, the partial derivative of the log 

function of the joint PDF with respect to µi is the first-order score function and is denoted 

as 
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Thus, the design sensitivity of the probability of failure using the score function does not 

include the gradients of the performance function, that is, the simulation model.  Instead, 

the first-order score function in Eq. (3-7) needs to be derived, which can be analytically 

performed assuming the input variable follows a standard distribution such as normal, 

log-normal, Gumbel, or Weibull.  Table 3.1 shows those four marginal PDFs.   

Table 3.1 Marginal PDF and Distribution Parameters 

Type PDF,  fx(x) Distribution parameters 

Normal 
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The derivation of the first-order score function can be performed for two different 

cases – independent and correlated random input variables.  For an independent random 

input variable, the first-order score function for µi can be derived as 
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where 𝑓𝑋𝑖
(𝑥𝑖; 𝜇𝑖) is the marginal PDF corresponding to the ith input random variable.  

Table 3.2 summarizes the derivation of Eq. (3.8) for four commonly used marginal PDFs.   

Table 3.2 First-Order Score Function for µi for Independent Random Variables 

Marginal distribution type First-order score function,  (1) ;
iµs x μ   

Normal 2

i i

i
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Source: Lee, I., Choi, K. K., Noh, Y., Zhao, L. & Gorsich, D. (2011b). Sampling-based 
stochastic sensitivity analysis using score functions for RBDO problems with 
correlated random variables. Journal of Mechanical Design, 133(2), 021003. 

 

For bivariate correlated random input variables, Xi and Xj, the joint PDF can be expressed 

as (Noh et al., 2011a; Noh et al., 2011b) 

 

 
 

   

     

, ;
; ; ;

, ; ; ;

i j

i j

X i X j j

X

i

i Xi j j

C u
f x f x

u

c u f x

f µ µ

µ f µx

 



 




 



X x μ
, (3-9)                                                    



www.manaraa.com

22 
 

 
 

 

where C is a copula function, u and υ are CDFs for Xi and Xj, respectively, and θ is the 

correlation coefficient between Xi and Xj.  Table 3.3 lists commonly used copula 

functions.   

Table 3.3 Commonly Used Copula Functions 

Copula type   , ;C u    

Clayton   
1/

1u


 


    

AMH    1 1 1

u

u
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ln 1 1 1 / 1ue e e  



       
   

FGM    1 1u u u       
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1 2
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u sw s w
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In Eq. (3-9), the partial derivative of the copula function with respect to marginal CDFs u 

and υ is called the copula density function, c(u,υ;θ), which is derived in Table 3.3.  

Accordingly, the first-order score functions in Eq. (3-8) for a correlated bivariate input 

random variables can be derived as 
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The derivative of the first term is shown in Table 3.4 and the second term of the right-

hand side is identical to Eq. (3-8).  In Table 3.4, Φ(•) and ϕ(•) indicates the standard 

normal CDF and PDF, respectively.  The partial derivative of marginal CDF, 𝜕𝑢/𝜕𝜇𝑖, 

used to calculate log-derivative of copular density function in Table 3.4 can be easily 

derived as shown in Table 3.5. 

Table 3.4 Log-Derivative of Copula Density Function 

Copula type 
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Source: Lee, I., Choi, K. K., Noh, Y., Zhao, L. & Gorsich, D. (2011b). Sampling-based 
stochastic sensitivity analysis using score functions for RBDO problems with 
correlated random variables. Journal of Mechanical Design, 133(2), 021003. 
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Table 3.5 Partial Derivatives of Marginal CDF with Respect to µi 

Marginal distribution type Partial derivative of marginal CDF, 
i

u
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Source: Lee, I., Choi, K. K., Noh, Y., Zhao, L. & Gorsich, D. (2011b). Sampling-based 
stochastic sensitivity analysis using score functions for RBDO problems with 
correlated random variables. Journal of Mechanical Design, 133(2), 021003. 

 

It can be found that the first-order score function, which is used to compute the design 

sensitivity of the probability of failure, does not require the gradient of performance 

measure.  As explained in Section 3.2.1, for the efficiency, the sampling-based RBDO 

uses surrogate models to evaluate the output response value.  Once accurate surrogate 

models are available, the MCS can be applied to estimate the sensitivity of the probability 

of failure as well as the probability of failure.  In that sense, the calculation of the design 

sensitivity of the probability of failure in Eq. (3-6) can be approximated using MCS as   
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where nMCS is the number of MCS samples, and x(k) is the kth realization of x.  It can be 

seen that the first-order score function does not involve the sensitivity of surrogate 

models which is known to be inaccurate.  Furthermore, the calculation of score function 

is not an approximation method such as the finite difference method (FDM) because it 

uses an analytical expression of the input PDF.  However, there exists MCS error that 

depends on the target probability of failure and MCS sample size.  The MCS error can be 

defined as (Haldar & Mahadevan, 2000)      

 

 1
% 200%

Tar
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Tar

F
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, (3-12)                                                    

 

where 
i

Target

FP  is the target probability of failure.  It is shown that the number of MCS 

samples should be increased to satisfy the desired accuracy level.  In addition, the number 

of MCS samples should be very large to increase the accuracy when the target probability 

of failure is small (e.g., 6-sigma design).  In the following chapters, the sampling-based 

RBDO method using MCS applied to the very accurate DKG models described in this 

chapter will be used.    
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CHAPTER 4                                                                                                       

PROPOSED CONFIDENCE-BASED MODEL VALIDATION FOR CONSERVATIVE 

RELIABILITY ASSESSMENT CONSIDERING LIMITED EXPERIMENTAL 

OUTPUT DATA 

In this section, a new methodology of model validation for reliability assessment 

with insufficient experimental output data is proposed.  The proposed model validation 

accounts for the uncertainty caused by insufficient experimental output data and includes 

two steps.  In Step 1, using sampling-based Bayesian analysis, a target output PDF that 

conservatively estimates a probability of failure at a target confidence level is obtained.  

In Step 2, confidence-based model bias correction is carried out by matching the 

simulation output PDF to the target output PDF obtained in Step 1.  The simulation 

model, which is validated using the developed method, may not predict true probability 

of failure; but it satisfies the target confidence level.  Because the methodology provides 

the confidence of the simulation model (or the RBDO design when it is integrated in the 

RBDO process) with the target confidence level, it is referred to as confidence-based 

model validation. 

In Section 4.1, the underlying philosophy of model validation for reliability 

analysis is explained.  In this study, a target output PDF is introduced, to which 

simulation output PDF needs to be matched.  Section 4.2 addresses the issue when only 

insufficient experimental output data is provided in real practical situations.  

Accordingly, new model validation method should account for the uncertainty induced by 

insufficient experimental output data.  Furthermore, it is emphasized that this thesis 

handles the situation in which the exact input values that correspond to experimental 

output data are unknown.  To handle this issue, the proposed confidence-based model 

validation selects a confidence-based target output PDF.  Section 4.3 describes in detail 

the computational procedure to select a confidence-based target output PDF that 
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estimates the probability of failure conservatively.  The conservativeness is controlled by 

a user-specified target confidence level.  Section 4.4 explains model validation 

optimization, which corrects model bias by matching simulation output PDF with 

confidence-based target output PDF.  After that, a validated simulation output PDF that 

satisfies the target confidence level can be obtained.  Note that the validated simulation 

model obtained using the developed method does not predict the true probability of 

failure but rather estimates the probability of failure conservatively with a certain 

probability – the target confidence level.  

 

4.1 Philosophy of Model Validation for Reliability 

Analysis 

The output variability, which is represented by the output PDF, is combination of 

the input variability and simulation.  Modeling of an accurate output PDF can be 

achieved under two requirements: (1) correct input variability is known by the input joint 

PDF and (2) the simulation model has no bias.  It is noted that, for the biased simulation 

model, the accurate output variability cannot be estimated even though the correct input 

variability is given.  The output PDF has to be accurately identified to accurately estimate 

the reliability of system because an inaccurate output PDF would yield an 

underestimation or overestimation of the probability of failure.  Hence, estimating an 

accurate output PDF is an essential task in reliability analysis.  To do that, the simulation 

output PDF (the output PDF obtained using simulation model before model validation), 

not the deterministic output, needs to be validated against experimental output data that is 

a realization of real physics.  At the same time, experimental output data needs to be 

treated as a random quantity since it involves manufacturing variability and systematic 

uncertainties in the experimental measurement.  For this reason, in each experiment, not 
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all physical conditions, such as the specimen and the measurement of response, can be 

exactly reproduced.  This indicates that the true response value is random.  Thus, the 

randomness of the experimental output data is represented by the true output PDF in this 

study.  Accordingly, theoretically, the simulation output PDF needs to be matched with 

the true output PDF.  However, the true output PDF is not available in practical 

applications because the model bias is unknown.  Therefore, instead of using true output 

PDF, we have to predict a target output PDF, to which the simulation output PDF will be 

validated as shown in Figure 4.1.  However, the selection of the target output PDF is not 

simple since there could be various possible predicted output PDFs that could represent 

the given experimental output data.  The underlying idea of selecting an appropriate 

target output PDF will be explained in Section 4.2.  

 

Figure 4.1 Illustration of Output PDFs  
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4.2 How to Handle an Insufficient Experimental Output 

Data in Proposed Model Validation   

 

It is very difficult to characterize true model bias accurately.  Obtaining accurate 

model bias exactly means obtaining true output PDF using enormous number of 

experiments.  However, in real engineering problems, we cannot experiment with all 

uncertain quantities due to the expense of full-scale product testing, so only a limited 

number of experimental output data is available.  Furthermore, this thesis handles the 

situation in which the exact input values that correspond to the experimental output data 

are unknown; only the mean value of the input is known.  For example, in the collision 

test of the same five vehicles, we do not have the exact difference of the input variable 

value (e.g., geometry dimension and material properties) between those five vehicles; 

only mean value of the input is known.  The obtained experimental (output) results may 

correspond to a different combination of input variable values while their mean values 

are supposed to be the same.  This assumption, which is more associated with real 

practical applications, differs from the situation that conventional validation approaches 

deal with.  It is noted that we validate the simulation output PDF against the target output 

PDF, rather than using pointwise validation, because only experimental output data is 

given; the exact input values are unknown, as mentioned above.   

In addition, there is the uncertainty induced by insufficient experimental output 

data.  In the presence of the uncertainty due to insufficient experimental output data, a 

predicted output PDF becomes uncertain; there could be various possible predicted 

output PDFs as shown in Figure 4.2.  Accordingly, an uncertainty also exists in the 

predicted probability of failure, which is calculated based on the predicted output PDF.  

Therefore, among the predicted output PDFs, one has to be selected as a target.  To 

compensate for the uncertainty induced by the limited number of experimental output 

data, the system should predict the reliability conservatively so that the designed product 
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is conservative.  In this study, we suggest to conservatively estimate target output PDF 

that overestimates the true probability of failure of the system among many possible 

candidates of predicted output PDFs.  In the meantime, conservativeness should be 

appropriate not to yield an overly conservative design.  The proposed method enables 

engineers to specify the level of conservativeness, and the confidence concept needs to be 

introduced to control the conservativeness.  A detailed numerical procedure to select the 

confidence-based target output PDF will be explained in Section 4.3.  

Figure 4.2 Uncertainty in Target Output PDF and Probability of Failure Due to 
Insufficient Experimental Output Data 

 

4.3 Conservative Estimation of Target Output PDF and 

Probability of Failure Using Sampling-Based Bayesian 

Analysis 

4.3.1 Bayesian Modeling of Output PDF 

To model an output PDF, we have to carefully choose a distribution type.  

Because the output PDF is a combination of input PDF and nonlinear output response, 
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the distribution type of output PDF may not be any standard parametric distribution.  In 

that sense, a non-parametric method such as the Pearson system or Kernel Density 

Estimation (KDE) is useful when a standard parametric distribution type cannot properly 

describe data or when we want to avoid assumptions about the output PDF.  We found 

that the Pearson system, which covers various types of parametric distributions, fails to 

describe highly skewed distributions (Pearson, 1916) while KDE can handle them.  

Therefore, KDE is chosen to predict output PDFs in this study.  Consider an independent 

and identically distributed data yi sampled from unknown density f.  The estimated 

density function in KDE is defined as  

 

 
10 0

1 n
i

i

y y
f y K

nh h

 
  

 
 , (4-1)                                                    

 

where h0 is a smoothing parameter called the bandwidth and  K  is a kernel.  While a 

histogram places a discrete bin (box) at data points, KDE builds the kernel, which is a 

smooth and continuous function.  The kernel is the non-negative integrable function that 

satisfies the following two requirements: 

1. The integration over the entire real line should be one (i.e.,   1K u du



 ) 

2. K(u) = K(−u) for all values of u. 

In particular, the first requirement ensures that the result of KDE yields a PDF.  Several 

types of kernel function that are commonly used are listed in Table 4.1.  In Table 4.1, I is 

the indicator function.  As shown in Eq. (4-1), the advantage of the KDE is that there is 

only one unknown parameter, the bandwidth.  If there exist many unknown parameters to 

be quantified, the uncertainty is easily overestimated, and the overestimation leads to an 

unnecessarily conservative output PDF.  In KDE, because the bandwidth is the only 

unknown parameter, it has a strong influence on probability density; a large bandwidth 

leads to too smooth distribution, and a small bandwidth creates discontinuous 
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distribution.  Therefore, selecting an appropriate bandwidth is critical.  The standard 

KDE in Eq. (4-1) uses a fixed bandwidth (h0) assuming that the statistical properties of 

the underlying data are stationary.  Consequently, the standard KDE tends to over-smooth 

the region where data is concentrated and to under-smooth the tail part of the distribution 

and the sparse data region.  Adaptive kernel density estimation (AKDE), which has 

variable bandwidth can improve the standard KDE.  For AKDE, Eq. (4-1) is modified as 
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 , (4-2)                                                    

 

where h(yi) is the variable bandwidth that is narrower at high density region and wider at 

low density region.   

Table 4.1 Types of Kernel Function 

Type Kernel function, K(u) 

Uniform  
1

1

2 u
K u I

  
  

Triangular     1
1

u
K u u I

  
   

Epanechinikov    2

1

3
1

4 u
K u u I

  
   

Gaussian   21 1
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Biweight    
2

2

1

15
1

16 u
K u u I

  
   

Triweight    
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35
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32 u
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In this study, AKDE is used to model output PDF using both experimental output 

data and simulation model.  In AKDE, the uncertainty of the output PDF is reflected by 

the posterior distribution of the bandwidth, which is the multiplication of the likelihood 

function and the prior distribution of the bandwidth.  The likelihood function only 

depends on experimental output data; the prior distribution is specified using the 

simulation output PDF.  Detailed computational procedure will be explained.  For the 

likelihood function, this paper uses a cross-validation likelihood function using 

Silverman’s AKDE (Silverman, 1986), which is defined as 
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where ne is the number of experimental output data, 
1 2[ , ,..., ]e e e e T

ney y yy  is the 

experimental output data vector, and  0;e

i if y h
 is the leave-one-out estimator defined as 
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In Eq. (4-4),  0;e

ih y h  is the variable bandwidth (Silverman, 1986) defined as 
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where h0 is the fixed bandwidth, and  0;e

if y h  is the initial density estimation (pilot 

density) obtained using h0.  Once the fixed bandwidth h0 is provided, the variable 
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bandwidth  0;e

ih y h  at each experimental output data point 𝑦𝑖
𝑒 can be evaluated using 

Eq. (4-5).  Therefore, we specify a prior distribution over the fixed bandwidth, denoted 

by P(h0), not the variable bandwidth, as defined below: 
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. (4-6)                                                    

 

Here, σs and IQRs are the standard deviation and the interquartile range (i.e., the 

difference between 75% and 25% quantile values) of the biased simulation output PDF, 

respectively.    It is noted that the information of the biased simulation output PDF is used 

to construct the prior distribution.  Even though the simulation model is inaccurate, it is 

the best information we have and can provide an informative prior in Eq. (4-6).  In Eq. 

(4-6), np is the prior sample size that indicates that we believe the information in the prior 

is equivalent to np experimental output data.  In this paper, np is set to a small number 10 

to represent lack of prior information.  Prior sample size np does not have a significant 

effect on the final result because (4/3np)
1/5 in Eq. (3-6) does not significantly vary 

depending on np.  Thus, the number 10 could be applied for any problem dealing with an 

insufficient experimental output data.  Because the bandwidth is a positive value, the 

gamma distribution can represent the prior well.  The mean of P(h0) is a, which is the 

optimal bandwidth obtained from the simulation output PDF using Silverman’s rule 

(Silverman, 1986).  The distribution parameters 14 and a/14 in Eq. (4-6) have been 

selected such that the prior distribution of bandwidth covers the optimal bandwidth (a) 

for the extreme case in which np is 1.  The optimal bandwidth for the extreme case falls 

into the upper bound of the 95% confidence interval of prior distribution. 
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4.3.2 Quantification of Distribution of Probability of 

Failure 

As stated earlier, with the presence of insufficient experimental output data, a 

predicted output PDF becomes uncertain.  Accordingly, an uncertainty exists in the 

predicted probability of failure, which is calculated based on the predicted output PDF.  

To quantify uncertainty in the probability of failure, the distribution (specifically, 

marginal CDF) of probability of failure, which describes all possible probabilities of 

failure given insufficient experimental output data, is necessary.  To obtain the 

distribution, the posterior distribution  0
|

e
P h y  for the fixed bandwidth is firstly 

formulated by the multiplication of the likelihood function of Eq. (4-3) and the prior 

distribution of Eq. (4-6) as 

 

     0 0 0| e eP h L h P hy y  (4-7)                                                    

 

Once the fixed bandwidth h0 is given, the variable bandwidth, which is the unknown 

parameter in constructing the output PDF, can be evaluated.  Then, the predicted output 

PDF and the probability of failure are uniquely determined.  As a result, the conditional 

PDF of the probability of failure (pF), given the fixed bandwidth h0 and the experimental 

output data ye, becomes the Dirac delta measure as 
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where  0
|

e

F hp y  is the obtained probability of failure when h0 is given.  The probability 

is the integration of Eq. (4-8).  When pF equals  0
|

e

F hp y , the probability becomes one, 
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while the probability of getting any other values of pF is zero.  The CDF of the 

probability of failure,  |
F

e

p FF p y , can be formulated as   
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Meanwhile, the posterior distribution of h0 in Eq. (4-9) cannot be analytically obtained so 

that the realization of the h0 needs to be generated using the Markov Chain Monte Carlo 

(MCMC) sampler in accordance with  0
|

e
P h y .  The Metropolis-Hasting algorithm has 

been used to obtain the random realization of h0.  Consequently, integration in Eq. (4-9) 

is numerically evaluated using MCS integration as 
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(4-10)                                                    

 

M is the number of MCS samples, and h0
(i) is the ith realization of h0 after burn-in in 

MCMC sampling. 

 

4.3.3 Selection of Confidence-Based Target Output PDF at 

Target Confidence Level 

Using the CDF of the probability of failure, we can obtain the probability of 

failure at a specified percentile.  A higher percentile indicates a more conservative 

estimation of the probability of failure.  Therefore, the percentile is referred to as the 
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confidence level.  For example, the probability of failure at a 95% confidence level is 

higher than the one at an 80% confidence level as shown in Figure 4.3.  Designers can 

choose a target confidence level, CLTarget, so that they can control the confidence level of 

the estimated probability of failure and so the confidence-based model validation.  The 

probability of failure at the target confidence level, pF
confidence (CLTarget), is the confidence-

based probability of failure, and the predicted output PDF, which produces the 

confidence-based probability of failure, is selected as the confidence-based target output 

PDF.   

 

Figure 4.3 CDF of Probability of Failure 
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4.4 Model Validation Optimization for Confidence-Based 

Model Bias Correction 

4.4.1 Formulation of Model Validation Optimization 

Using the obtained confidence-based probability of failure and the target output 

PDF at CLTarget, the model bias can be estimated conservatively (Moon et al., 2015).  

Model bias correction is an optimization process to validate the biased simulation model.  

It is noted that the model validation optimization is not the design optimization.  The 

objective is to minimize the distance between the simulation output PDF and the 

confidence-based target output PDF.  The distance is measured by a similarity measure, 

denoted by validation measure.  There exist various validation measures that can compare 

two distributions.  The Kullback–Leibler divergence (K-L divergence) (Kullback & 

Leibler, 1951) is defined by  

 

   
 

 
logKL

m x
D M N m x dx

n x




  , (4-11)                                                    

 

where m and n denote the PDFs of M and N.  It is well known that the K-L divergence is 

non-negative but non-symmetric and unbounded.  The CDF difference approach, which 

is defined as  

 

CDF ( ) ( )M NF x F x dx



   , (4-12)                                                    

 

where FM and FN are the CDFs of M and N, is a symmetric measure but it requires heavy 

computational time.  The Hellinger similarity (Nikulin, 2001) is a bounded and 

symmetric metric, which is defined by 
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In the meantime, the Hellinger similarity can be expressed using the Bhattacharyya 

distance (i.e., 1 − Bhattacharyya distance).  In the Hellinger similarity, the maximum 

value (one) is achieved when two distributions do not have any overlap area; when two 

distributions are identical, the value goes to minimum (zero).  In this study, the Hellinger 

similarity H(ν) in Eq. (4-14) is used as a validation measure to evaluate the distance 

between the simulation output PDF and the confidence-based target output PDF because 

it is symmetric, bounded and computationally efficient.   

Using the Hellinger similarity, the model validation optimization is formulated to 

force the validated simulation output PDF to produce the confidence-based probability of 

failure that satisfies the target confidence level.  The formulation of the model validation 

optimization can be expressed as 
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, (4-14)                                                    

 

where x is the input random variable vector, ν is an optimization variable vector (not the 

design variable vector of RBDO), q(g;CLTarget) is the confidence-based target output 

PDF, pF
confidence(CLTarget) is the confidence-based probability of failure and NRV is the 

number of input random variables.  The elements of the optimization variable vector ν are 

the statistical properties (i.e., mean and standard deviation) of model bias function B(x;ν).  

The model bias function B(x;ν) has variability; hence, it follows a certain distribution at a 

given design due to the variability.  Therefore, the mean and standard deviation (ν) of the 

model bias, not the deterministic value of model bias, have been adjusted in the model 
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validation optimization.  By minimizing the Hellinger similarity in Eq. (4-14), the 

validated simulation model – validated simulation output PDF – will be a distribution as 

similar to the target output PDF as possible.  At the same time, by the constraint in Eq. 

(4-14), the validated simulation model will produce the confidence-based probability of 

failure.   

The validated simulation model is defined as g(x;ν) = G(x) + B(x;ν), where G(x) 

is the biased simulation output.  Accordingly, p(g(x;ν)) indicates the validated simulation 

output PDF with model bias correction.  It is worth noting that the confidence-based 

target output PDF q(g;CLTarget) cannot be readily obtained as a function of the input 

random variable x.  Hence, pF
confidence (CLTarget) that corresponds to the q(g;CLTarget) 

cannot be used to calculate stochastic design sensitivity using the score function derived 

in Section 3.2.2 because pF
confidencee(CLTarget) is not differentiable function of the RBDO 

design variable (i.e., µ defined in Section 3.1).  On the other hand, the validated 

simulation output PDF p(g(x;ν)) is related to x that enables calculation of the stochastic 

sensitivity with respect to µ.  For this reason, the model validation optimization is 

necessary to carry out stochastic sensitivity analysis in RBDO even though the target 

output PDF has been obtained from Bayesian analysis in Section 4.3.3.  This is one of the 

reason that the simulation model is validated, not directly using the target output PDF in 

RBDO. 

 

4.4.2 Validated Simulation Model 

After carrying out the proposed model validation optimization in Section 4.4.1, 

validated simulation model (validation simulation output PDF) can be obtained with 

model bias correction.  The proposed method seeks the confidence-based model bias by 

matching g(x;ν) to the confidence-based target output PDF q(g;CLTarget).  Therefore, the 

model bias B(x;νopt) drawn at the optimum νopt is conservative.  As a result, the optimized 
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model bias leads to the conservative evaluation of the probabilistic constraint in the 

RBDO process.  Because the optimized model bias satisfies the target confidence level, it 

is denoted by confidence-based model bias, B(x; CLTarget) = B(x;νopt).  It is noted that the 

validated simulation model obtained using the confidence-based model bias is not 

intended to provide an accurate estimation of the true probability of failure, which is not 

possible in the presence of insufficient experimental output data.  The confidence that the 

probability of failure estimated using the validated simulation model is larger than the 

true probability of failure is the same as the target confidence level, CLTarget, which we 

can control.  Due to model bias correction, the failure domain defined in Section 3.2.1 

needs to be updated.  The failure domain for validated simulation model is defined by 

    : ; 0Target

F G B CL   x x x .  Notice that the volume of failure domain for 

validated simulation model is increased by the confidence-based model bias term, B(x; 

CLTarget).  After simulation output MCS points are evaluated using DKG models, we need 

to update the output MCS point by adding confidence-based model bias for the 

conservative calculation of probability of failure at the target confidence level.  

Accordingly, the evaluation of probability of failure and stochastic sensitivity analysis 

using MCS need to be carried out on the modified failure domain as shown in Eq. (4-15) 

and Eq. (4-16), respectively. 
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where nMCS is the number of MCS samples, and x(k) is kth realization of x. 
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4.4.3 Calculation of Sensitivity of Validation Measure  

The model validation optimization in Eq. (4-14) requires sensitivity of Hellinger 

similarity with respect to ν for its efficient and effective process.  Hellinger similarity 

H(ν) can be expressed by the function of validated simulation output PDF p(g(x;ν)).  

Thus, to calculate the sensitivity of H(ν), the sensitivity of the validated simulation output 

PDF p(g(x;ν)) with respect to ν is required.  However, we cannot calculate an analytical 

expression of the validated simulation output PDF; and cannot derive the analytical 

sensitivity of the validated simulation output PDF.  Hence, the sensitivity of Hellinger 

similarity should be calculated using an approximation method such as finite difference 

method (FDM).  However, a certain amount of numerical error (MCS error) occurs in 

evaluating H(ν) because MCS is used for the evaluation.  Hence, an accurate sensitivity 

of H(ν) using the conventional FDM cannot be obtained because the MCS error hinders 

finding the appropriate step size for the FDM.  As the central FDM sensitivity of H(ν) 

with respect to the j-th optimization variable νj is formulated as Eq. (4-17), it contains 

both truncation and round-off error inherently.    
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, (4-17)                                                    

 

Hence, an appropriate finite difference step size Δνj is very difficult to obtain, so 

the FDM will suffer the numerical error.  In this study, the complex variable method 

(CVM) has been used to improve the accuracy of the sensitivity (Martins, Sturdza & 

Alonso, 2003).  The CVM is based on a Taylor series expansion that takes a perturbation 

along the imaginary axis as  
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It is observed that the first-order derivative of H(ν) with respect to the j-th optimization 

variable νj can be obtained by isolating the imaginary part of Eq. (4-18) with a truncation 

error of order 
2

j  as 
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Im
 

j j
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j jCVM

H iH  


 

      
 

, (4-19)                                                    

 

where Im[·] is an imaginary part of a complex value.  It is noted that the calculation of 

Eq. (4-19) does not subtract the response values, which avoids the round-off error.  As a 

consequence, the truncation error can be minimized by using a sufficiently small step 

size.  Thus, the sensitivity using CVM is stable and accurate even with small step size.  

One limitation of CVM is that performance measure analysis should be able to handle a 

complex variable.  However, this limitation can be resolved by using a surrogate model 

for the performance measure.  
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CHAPTER 5                                                                                                     

NUMERICAL TESTS TO DEMONSTRATE CONFIDENCE-BASED MODEL 

VALIDATION 

In this chapter, the capability of the proposed confidence-based model validation 

is verified.  In Section 5.1, a mathematical example for RBDO is described and 

conventional RBDO optimization without model validation is carried out to find the 

conventional RBDO optimum design.  The simulation model used in this section 

underestimates the true probability of failure (i.e., the non-conservative simulation 

model) so that the conventional RBDO optimum design does not satisfy the target 

probability of failure.  Then, at this conventional RBDO optimum design, two numerical 

tests to verify the confidence-based model validation are performed for active constraints.  

First, it is demonstrated that the validated simulation model can satisfy the target 

confidence level.  The second test is to check whether the validated simulation model 

converges to the true model as we use more experimental output data.  In Section 5.2, 

different type of model bias is applied to the same mathematical example.  The 

simulation model tested in this section overestimates the true probability of failure (i.e., a 

conservative simulation model) so that the conventional RBDO design is already 

conservative.  At this conservative conventional RBDO design, performance of the 

proposed confidence-based model validation will be discussed.  

 

5.1 Numerical Verification of Confidence-Based Model 

Validation for RBDO 

 

This section introduces a numerical example to demonstrate the effectiveness of 

the proposed confidence-based model validation method.  Numerical tests to verify the 

confidence-based model validation will be carried out at the conventional RBDO 
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optimum.  Thus, in Section 5.1.1, conventional RBDO without model validation is firstly 

carried out, and the conventional RBDO optimum design is compared with the true 

RBDO optimum design to check whether it truly satisfies the target reliability in the 

presence of the model bias.  In this section, a non-conservative simulation model is used 

as explained earlier.  In Section 5.1.2, it is demonstrated that the validated simulation 

model can satisfy the target confidence level.  In addition, it is verified that the validated 

simulation model converges to the true model as we use more experimental output data.  

 

5.1.1 Example Description and Conventional RBDO 

 The following IOWA 2-D mathematical example is used: 
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(5-1)                                                    

 

where the biased simulation output Gi(x) can be expressed by 𝐺𝑖(𝐱) = 𝐺𝑖
𝑡𝑟𝑢𝑒(𝐱) − 𝐵𝑖(𝐱).  

Here, the unknown true output 𝐺𝑖
𝑡𝑟𝑢𝑒(𝐱) is defined as    
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In general, the biased simulation model obtained in the modeling process could (1) 

underestimate or (2) overestimate the true probability of failure.  The former (non-

conservative simulation model) leads to an unreliable RBDO optimum design, while the 
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latter (conservative simulation model) leads to a conservative optimum design. The biased 

simulation model described in this section is a non-conservative simulation. The case of 

the conservative simulation model will be shown in Section 5.2.  In this section, the 

unknown model bias Bi(x) is defined as 
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Two input random variables x1 and x2 follow normal distribution as shown in Table 5.1, 

and they are correlated to each other with the Clayton copula (Kendall’s tau, τ = 0.5).  

The target probability of failure for all probabilistic constraints is 2.275%.   

Table 5.1 Statistical Properties of Input Random Variables 

Input random variable Distribution type dL d0 dU 
Standard 

deviation 

x1 Normal 0.0 5.0 10.0 0.3 

x2 Normal 0.0 5.0 10.0 0.3 

 

The limit states of the true output functions, Gtrue(x) = 0, and the biased simulation output 

functions, Gi(x) = 0, are drawn in Figure 5.1.  It can be seen that the feasible domain by 

the biased model (surrounded by blue lines) is larger than the true feasible domain 

(surrounded by red lines) because the biased model is non-conservative compared to the 
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true model.  In this mathematical example, true output functions are treated as physical 

experiments, which are unknown. 

 

Figure 5.1 Contour of Cost Function and Limit States of Non-Conservative Simulation 
Output G(x) and True Output Gtrue(x) 

From the initial design d0 = [5.0, 5.0], DDO has been carried out first for computational 

efficiency, and then the conventional RBDO has been launched at the DDO optimum 

design.  During the conventional RBDO procedure, the model validation has not been 

carried out, which means no experimental output data is required.  At the conventional 

RBDO optimum design, d1 = [5.1050, 1.3947], the estimated probability of failure using 

the biased simulation model satisfies the target reliability as shown in Table 2.  However, 

those values are not the true probability of failure due to the model bias.  To check 

whether the conventional RBDO optimum design truly satisfies the target probability of 

failure, reliability analysis using the true output function in Eq. (5-2) has been carried out 

for active constraints as shown in Table 5.2.  The true probability of failure is 5.550% for 

G1 and 12.700% for G2.  Therefore, it can be seen that the conventional RBDO without 
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incorporating model validation underestimates the true probability of failure and does not 

satisfy the target reliability level.   

Table 5.2 True Reliability Analysis at Conventional RBDO Optimum 

Constraint Estimated PF without model validation True PF 

G1 2.285% 5.550% 

G2 2.275% 12.700% 

 

5.1.2 Repeated Tests of Confidence-Based Model 

Validation 

The objective of the proposed confidence-based model validation is to obtain a 

conservative RBDO optimum design by evaluating the confidence-based probability of 

failure at the target confidence level.  Therefore, it is necessary to check whether the 

probability of failure obtained using the validated simulation model truly satisfies the 

target confidence level.  In theory, the confidence level is the probability that the true 

probability of failure is less than the confidence-based probability of failure.  If the 

confidence level is 95%, the true probability of failure is smaller than its conservative 

estimation with 95% probability.  In other words, the probability of underestimating the 

true probability of failure is 5%.  However, this cannot be numerically demonstrated 

because the probability of the probability of failure is not known in advance, and 

therefore the confidence level is not directly interpretable to users.  Practically, the 95% 

confidence level can be interpreted to mean that at least 95% of trials of the model 

validations with different sets of experimental output data conservatively estimate the 

true probability of failure.   
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To demonstrate whether the proposed method can satisfy the target confidence 

level, confidence-based model validation has been carried out 1000 times with 1000 

independently drawn sets of experimental output data for two active constraints, G1 and 

G2 in Section 5.1.1.  Each set contains ten experimental output data.  Experimental output 

data has been randomly collected from the true output PDF.  In these 1000 repeated tests, 

the target confidence level is set to 95%.  Figure 5.2 shows the histogram of the 

confidence-based probabilities of failure obtained from 1000 repeated tests.  For 

constraint G1, among 1000 tests, 94.6% of the confidence-based probabilities of failure 

are larger than the true probability of failure (True PF = 5.550%) as shown in Figure 5.2.  

For constraint G2, 98.1% of the tests evaluate larger confidence-based probabilities of 

failure than the true probability of failure (True PF = 12.700%).  For both active 

constraints G1 and G2, the percentage is close to or larger than 95%.  This highlights that 

the validated simulation model obtained using the confidence-based model validation 

satisfies the target confidence level of 95%.  These repeated model validation tests have 

been carried out on a high-performance computing (HPC) system—Excalibur (30-50 

nodes in parallel; each node has 32 cores and 128 GB memory)—at the U.S. Army 

Research Laboratory (ARL) as the test requires highly extensive computational time.  

One model validation test with ten experimental output data takes around 5-6 hours using 

12 cores and 48 GB memory.  Thus, in order to complete 1000 repeated tests, it would 

take around 250 days, which is not viable.  Using the ARL HPC, 1000 repeated tests have 

been finished in 8 days.    
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Figure 5.2 Histogram of Confidence-Based Probabilities of Failure for 1000 Tests (Left: 
Constraint G1, Right: Constraint G2) 

In addition, it is important to note that in order to verify whether the proposed method 

satisfies the target confidence level, it required 1000s of runs with 1000 sets of 

experimental output data.  This could not have been accomplished in a timely manner on 

desktop workstations.  The ability to utilize the DOD High Performance Computing 

Modernization Program's Excalibur system, a 100,000 core, 3.7 PFLOP, Cray XC 40 at 

the ARL, was one of the keys to success for this research effort. 

 

5.1.3 Convergence Study with the Increasing Number of 

Experimental Output Data 

In this section, the number of experimental output data increases from five to 300.  

Five different cases (5, 10, 50, 100, and 300 data) are considered to investigate the effect 

of the size of experimental output data on the confidence-based model validation.  For 

each case, ten different sets of data are randomly drawn from the true output PDF.  The 

target confidence level is set to 95% for all cases.  The confidence-based probability of 

failure for each case with each data set has been calculated; the mean and standard 
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deviation of the confidence-based probability of failure have been obtained for each case.  

The summary of the convergence study is listed in Table 5.3. 

Table 5.3 Convergence Behavior of Validated Simulation Model with Increasing Size of 
Experimental Output Data 

Data size 

Mean of confidence-based 

probabilities of failure 

Standard deviation of confidence-

based probabilities of failure 

G1 G2 G1 G2 

5 11.903% 29.520% 5.550% 6.891% 

10 15.159% 22.521% 5.882% 6.258% 

50 11.915% 20.750% 3.065% 4.177% 

100 9.493% 19.811% 2.450% 2.094% 

300 7.479% 15.868% 0.916% 1.409% 

True 5.550% 12.700% 0% 0% 

 

 It can be seen that the standard deviation of the confidence-based probability of 

failure is rather large for the cases of five and ten data.  As the size of experimental 

output data increases, the standard deviation of the confidence-based probability of 

failure becomes smaller and converges to zero.  In other words, the uncertainty induced 

by insufficient experimental output data vanishes as the size of experimental output data 

increases.  Furthermore, the mean of confidence-based probability of failure is getting 

closer to the true probability of failure with increasing size of experimental output data.  

Therefore, it can be concluded that the validated simulation model obtained using the 

proposed confidence-based model validation converges to the true model by increasing 
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the number of experimental output data.  Moreover, we can see that the proposed method 

correctly reflects the amount of experimental output data. 

 

5.2. Confidence-Based Model Validation Applied to 

Conservative Simulation Model 

 

The previous section verified that the proposed confidence-based model 

validation using non-conservative simulation model can provide conservative reliability 

assessment.  This section discusses the performance of the proposed model validation 

when it is applied to the conservative simulation model that overestimates the true 

probability of failure so that the conventional RBDO optimum design is already reliable.  

In this situation, two cases have been tested: (1) a small biased model and (2) a large 

biased model.  For the conservative simulation model, G(x) in Eq. (5-1) needs to be 

modified by adding positive bias to the true model.  Table 5.4 shows conservative 

simulation output G(x) for both the small and large biased models.  In the table below, 

Gtrue(x) is identical to Eq. (5-2).  

Table 5.4 G(x) for Conservative Simulation Model 

Amount of bias Simulation output G(x) 

Small biased model 
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Limit states of the biased simulation and true model for both cases (small and large bias) 

are graphically shown in Figure 5.3.  Differing from the non-conservative simulation 

model discussed in Section 5.1, the feasible region for the simulation model is shrunken 

compared to the one for the true model. The expression of the cost function is identical to 

the one in Eq. (5-1).  In the same manner as the conventional RBDO procedure in Section 

5.1, conventional RBDO optimums using the conservative simulation model for both 

cases have been obtained; they are drawn in Figure 5.3. 

Table 5.5 shows conventional RBDO optimum designs for both cases. At these 

conventional RBDO designs, estimated probabilities of failure using the biased 

simulation model satisfy the target probability of failure, 2.275%.  On the other hand, the 

true probabilities of failure obtained using the true output function in Eq. (5-2) are 

smaller than the target probability of failure for both cases.  Specifically, the large biased 

model significantly overestimates the true probability of failure as shown in Table 5.5.  

Accordingly, the conventional RBDO optimum using a large biased model provides a 

more conservative design than the one using a small biased model.  It can be noted that 

the cost value at conventional RBDO optimum for both cases (−1.8163 for the small 

biased model and −1.5892 for the large biased model) have been increased compared to 

the true optimum cost value (−1.8848), as shown in Figure 5.3.  
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  Figure 5.3 Contour of Cost function and Limit States for Conservative Simulation 
Output G(x) and True Output G(x) (Top: Small Biased Model, Bottom: Large 
Biased Model) 
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Table 5.5 Summary of Conventional RBDO for Conservative Simulation Model 

Amount of bias 

Conventional RBDO 

optimum 

Estimated PF without 

model validation 
True PF 

d1 d2 G1 G2 G1 G2 

Small biased 

model 
5.1035 1.7491 2.277% 2.275% 0.803% 0.571% 

Large biased 

model 
5.5377 2.3745 2.279% 2.282% 0.001% 1.376% 

 

At the conventional RBDO design listed in Table 5.5, the proposed confidence-

based model validation is carried out to investigate how the proposed method can 

improve the original simulation model for different amounts of bias.  In addition, it is 

questionable whether the proposed method can provide a less conservative simulation 

model when conservatively biased simulation model is given.  The proposed model 

validation has been carried out for both active constraint G1 and G2 with different sizes of 

experimental output data (5 and 50) that are randomly drawn from the true output 

function in Eq. (5.2).  The target confidence level is set to 95% for all tests.  First, we 

would like to see the results for the small biased model.  Figure 5.4 depicts the summary 

of output PDFs for the small biased model.  It can be seen that the simulation output 

PDFs are located a little bit to the right side of the true output PDF which means more 

conservative simulation output PDFs than the true output PDF.  After applying the 

proposed method, it is found that the confidence-based target output PDFs are located 

further to the right side of the simulation output PDF and are wider than the simulation 
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output PDF.  This indicates that the model validation optimization will force the validated 

simulation model to move away from the true model. 

Table 5.6 shows the comparison between the result of the true reliability analysis 

and the confidence-based probability of failure using the proposed method for the small 

biased case.  It can be seen that the validated simulation model overestimates more than 

the original simulation model so that it becomes a more conservative model.  

Specifically, the validated model with five experimental output data estimates a much 

larger probability of failure (i.e., is more conservative) than the one with 50 experimental 

output data, as shown in Table 5.6.  It is anticipated that the validated model using the 

proposed method would be less conservative than the original simulation model when 

enough experimental output data is available.  

  

Figure 5.4 Illustration of Confidence-Based Target Output PDF for Small Biased Model 
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Table 5.6 Confidence-Based Probability of Failure using Validated Simulation Model for 
Small Biased Case 

 PF 

 For G1 For G2 

Biased simulation model 2.277% 2.275% 

Validated simulation model (data 5) 15.490% 8.240% 

Validated simulation model (data 50) 6.180% 4.400% 

True model 0.803% 0.571% 

 

Next, as for the large biased model, the simulation output PDF is significantly biased to 

the right side of the true output PDF as shown in Figure 5.5.  In this situation, the 

proposed model validation has been carried out at conventional RBDO design, [5.5377, 

2.3745].  The target confidence level is 95%.  Two cases have been tested assuming (1) 

five data and (2) 50 data.  After carrying out the proposed method, the confidence-based 

target output PDFs have shifted to the left side and are closer to the true output PDF.  

Therefore, the model validation optimization will provide a more accurate validated 

simulation model than the original simulation model.  Table 5.7 shows the confidence-

based probability of failure using the validated simulation model for the large biased 

case.  It can be clearly seen that the confidence-based probability of failure obtained 

using the validated simulation model is smaller than the probability of failure of the 

original simulation model but yet is larger than the true probability of failure.  In other 

words, the validated simulation model could relieve overestimation of the true probability 

of failure from the original simulation model, which means that the validated simulation 

model becomes less conservative than the original simulation model and is still reliable. 
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 As discussed above, when the model is significantly biased, the proposed method 

provides a less conservatively validated simulation model and is still reliable.  On the 

other hand, if the original simulation model is very accurate (i.e., small bias problem), the 

proposed method can produce an even more conservatively validated simulation model to 

compensate for the uncertainty induced by insufficient test data.  It is questionable 

whether the model validation is indeed necessary because the proposed model validation 

did not perform in a desirable way by making a more conservative model for the small 

biased model.  However, unless a sufficient number of experimental tests is available, a 

user may not be aware of whether the biased model underestimates or overestimates the 

true probability of failure.  Furthermore, it is not easy to determine how much the 

simulation model is biased in the presence of insufficient data.  Thus, the proposed 

method helps designers build confidence in the design regardless of the type and 

significance of the bias in the simulation model.  Given lack of test data, in order to 

provide designer confidence in the simulation model, the proposed model validation is 

essential. 

 

Figure 5.5 Illustration of Confidence-Based Target Output PDF for Large Biased Model 
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Table 5.7 Confidence-Based Probability of Failure using Validated Simulation Model for 
Large Biased Case 

 PF 

 For G1 For G2 

Biased simulation model 2.279% 2.282% 

Validated simulation model (data 5) 0.296% 1.755% 

Validated simulation model (data 50) 0.148% 1.264% 

True model 0.001% 1.376% 
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CHAPTER 6                                                                                                       

PROPOSED RELIABILITY-BASED DESIGN OPTIMIZATION USING 

CONFIDENCE-BASED MODEL VALIDATION 

Conventional RBDO methods have been developed to obtain a reliable design by 

accounting for only the inherent input variabilities resulting in output variabilities.  These 

methods typically use simulation models to connect input and output variabilities.  Thus, 

the simulation model should be accurate for obtaining accurate RBDO optimum design.  

For this purpose, the simulation model used for RBDO has to be validated using 

experimental output data and integrated with the RBDO process.  However, we do not 

have a very large number of experimental output data for the validation.  Furthermore, 

full-scale product testing cannot be carried out at many design configurations.  In that 

sense, the RBDO process should account for the uncertainty of the simulation model for a 

reliable optimum design.  Therefore, this chapter proposes a new RBDO method that 

incorporates the confidence-based model validation explained in Chapter 4.  The 

proposed RBDO method accounts for the uncertainty induced by insufficient 

experimental output data as well as the inherent variabilities so that it provides a 

conservative RBDO optimum design at the target confidence level even for the biased 

simulation model.  The final RBDO optimum design provides the designer confidence 

that the designed product will satisfy the target probability of failure with a certain 

probability level – the target confidence level.  Section 6.1 explains the formulation of the 

proposed RBDO using confidence-based model validation compared with the 

conventional RBDO.  Meanwhile, the challenge occurs in the process of RBDO with 

model validation.  The RBDO with model validation may have a convergence issue 

because the feasible domain changes as the design moves (i.e., a moving-target problem), 

which will be discussed in Section 6.2.  In Section 6.3, a practical RBDO using 

confidence-based model validation is proposed to resolve an unpredictable moving-target 
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problem for an insufficient experimental output data.  In addition, the practical RBDO is 

numerically demonstrated using a mathematical example.  

 

6.1. Formulation of Proposed RBDO using Confidence-

Based Model Validation 

 

The mathematical formulation of the RBDO using confidence-based model 

validation is stated as 

 

 

   

minimize Cost

subject to ; 0 , 1, ,

, and

i

Target Target

i i F

L U NDV NRV

P G B CL P i NC    
 

   

d

x x

d d d d x

, (6-1)                                                    

 

where d = µ(x) is the design variable vector, which is the mean value of the input random 

variable vector x; Gi(x) is the biased simulation output for the ith probabilistic constraint; 

Bi(x; CLTarget) is the confidence-based model bias at the target confidence level for the ith 

probabilistic constraint; and NC, NDV, and NRV are the number of probabilistic 

constraints, design variables, and input random variables, respectively.  It is noted that 

the confidence-based model bias is an additional term that the conventional RBDO does 

not account for.  The confidence-based model bias at the given design d can be modeled 

using any flexible distribution.  In this study, unknown bias is assumed to follow normal 

distribution for simplicity.  However, in real application other than model bias due to 

measurement error, bias may not follow normal distribution at a given design.  However, 

it is impossible to obtain the accurate distribution type in the presence of a limited 
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number of test data.  In the proposed method, by introducing the additional target value 

of a target confidence level, we can evaluate the probability of failure at a target 

confidence level for any distribution type of model bias.  For active constraints, the 

confidence-based model bias correction can be performed in parallel using parallel 

computing system.   

 

6.2. Challenge in RBDO Process with Model Validation 

6.2.1 Moving-Target Problem 

If the true model, the real physics, were available, true limit states for all 

performance measures could be obtained.  Accordingly, the RBDO using the model 

validation could produce a correct optimum design without any convergence issue by 

providing the exact probability of failure and design sensitivity with respect to design 

variables as shown in Figure 6.1.  In addition, in Figure 6.1, black dots indicates the 

trajectory of the true design iteration.  However, true limit states are not available when 

the simulation model involves model bias in real applications.  Instead of true limit states, 

we would have the limit states obtained using a validated simulation model in RBDO 

using model validation as shown in the top figure of Figure 6.2. 

As we have a biased simulation model, which is inherently not perfect, it is noted 

that the validated simulation model is not the true model, but that it is the best 

approximation of the true model based on the information (experimental output data) we 

have at the given design point.  Thus, even if we have a very large number of 

experimental output data, the validated simulation model is not the same as the true 

model.  Thus, the validated simulation model is not able to identify the effect of design 

change on model bias, and the model bias correction is different at different design 

points.  Hence, during the RBDO process, the feasible domain (solution space) obtained 
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using the validated simulation model changes as the design moves.  As a consequence, 

during the RBDO process, the solution space (feasible domain) obtained using the 

validated simulation model changes simultaneously when model bias correction is 

updated as the design moves.  Figure 6.2 illustrates the change of the feasible domain as 

the design moves during the optimization process, and the blue dots indicate the design 

iteration history in the RBDO process using model validation, which are not the true 

ones.  As a result, the optimum point moves as the feasible domain changes during the 

RBDO process.  Thus, carrying out the model validation during RBDO make it a 

moving-target problem.  Therefore, convergence can become a critical issue and the 

optimum solution becomes difficult to find. 

 

 

Figure 6.1 True Design Iteration History without Convergence Issue 
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Figure 6.2 Illustration of the Feasible Domain Obtained using the Validated Simulation 
Model That is Changed as a Design Moves in the RBDO Process using Model 

Validation. 
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6.2.2 Problem-Solving Strategy 

We address the question: “Is the moving-target problem solvable when the 

uncertainty induced by the number of experimental output data is negligible?”  We want 

to check whether enough experimental output data will allow us to solve the moving-

target problem.  The accurate target output PDF, which is very close to the true output 

PDF, can be obtained with enough experimental output data.  If so, the Bayesian analysis 

in Section 4.3 is not necessary.  Then the model validation optimization in Section 4.4 

can be carried out using the accurate target output PDF qaccurate(g), not the confidence-

based target output PDF q(g;CLTarget) in Eq. (4-14).  Furthermore, in Eq. (4-14), 

pF
coservative(CLTarget) is replaced with the accurate probability of failure pF

accurate.  In this 

case, we have 100% confidence in estimating the true probability of failure as we can 

evaluate the exact probability of failure.  Still, the shape of the validated simulation 

output PDF may not be the same as that of the true output PDF.  As a result, the 

optimized model bias obtained from the model validation optimization may not be close 

to true, and the stochastic design sensitivity may not be exactly calculated.   

In this section, two algorithms have been investigated:  (1) the model validation is 

carried out at every design iteration and line search using the accurate target output PDF, 

and (2) the model validation is performed at the initial design using the accurate target 

output PDF.  Then, RBDO is carried out using the same validated simulation model 

(fixed model bias correction) until the optimization converges.  At the RBDO optimum, 

the simulation model is validated again (i.e., model bias correction is updated), and the 

probabilistic constraints are re-checked using the newly validated model.  This process is 

repeated until the re-checked probabilistic constraint satisfies the target probability of 

failure.  Thus, multiple RBDO processes could be carried out until all constraints are 

satisfied.  The tested mathematical example is the same as the one described in Section 

5.1.1.  For efficiency of design optimization, the initial designs of all tests have been 

launched at the conventional RBDO optimum obtained in Section 5.1.1.  As a 



www.manaraa.com

66 
 

 
 

benchmark, the detailed conventional RBDO history using the true output function in Eq. 

(5-2) is listed in Table 6.1.  Table 6.2 shows the RBDO results using both algorithms 1 

and 2.  As shown in Table 6.2, it is noted that both algorithms 1 and 2 find the true 

RBDO optimum.  This demonstrates that the moving-target problem can be solved if 

there is no uncertainty introduced by the limited number of experimental output data.  

However, algorithm 1 requires a large number of line searches (41), whereas the RBDO 

using the true output function can find the optimum after 11 line searches even though 

the total number of design iterations (6) is the same when algorithm 1 is used, as shown 

in Table 6.2.  This indicates that algorithm 1 carries out model validations at 41 different 

design configurations.  In addition, it can be found that algorithm 2 is a more effective 

process because it requires model validations at only six different design points.  A 

detailed design and constraint history using algorithm 2 is listed in Table 6.3.  In Table 

6.3, 1st indicates the 1st intermediate RBDO optimum design, and the 0th intermediate 

RBDO optimum design is the conventional RBDO optimum.  Listed constraint values in 

Table 6.3 are calculated using the newly validated simulation model incorporating 

experimental output data collected at the intermediate RBDO optimums.  It is noted that 

experimental output data is collected only at intermediate RBDO optimums.  It can be 

seen that cost value in the history of RBDO using model validation when algorithm 2 is 

used does not decrease monotonically due to the moving target.  Yet, in this section, it 

can be seen that the moving target problem can be solved if there is enough number of 

data using both algorithms 1 and 2.  In addition, it is shown that the algorithm 2 is more 

efficient than algorithm 1.  Hence, algorithm 2 will be more elaborated for RBDO with 

limited number of test data case in following sections. 
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Table 6.1 Design and Constraint History using RBDO with True Function as a 
Benchmark 

 

Cost 

Design Constraint 

Iter. d1 d2 G1 G2 G3 

0,1* −1.9748 5.1050 1.3947 1.4694 4.5826 −1.0000 

1,1** −1.9140 5.0802 1.5280 0.3353 1.0411 −1.0000 

2,1 −1.8897 5.0662 1.5819 0.0351 0.1748 −1.0000 

3,1 −1.8850 5.0578 1.5924 0.0065 0.0140 −1.0000 

4,1 −1.8844 5.0575 1.5937 −0.0043 0.0043 −1.0000 

4,2 −1.8846 5.0564 1.5934 0.0118 0.0098 −1.0000 

4,3 −1.8838 5.0574 1.5951 −0.0064 −0.0109 −1.0000 

4,4 −1.8841 5.0572 1.5943 0.0040 0.0038 −1.0000 

5,1 −1.8843 5.0572 1.5940 −0.0070 −0.0053 −1.0000 

6,1 −1.8848 5.0566 1.5930 0.0007 −0.0025 −1.0000 

6,2 −1.8848 5.0569 1.5929 0.0048 0.0058 −1.0000 

6,3 −1.8848 5.0566 1.5930 0.0007 −0.0025 −1.0000 

Opt*** −1.8848 5.0566 1.5930 0.0007 −0.0025 −1.0000 

* 0,1 is initial design, which is the conventional RBDO optimum design. 

** 1,1 means 1st iteration and 1st line search. 

*** Opt means optimum.  
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Table 6.2 Summary of the Result for RBDO using Model Validation Assuming Enough 
Experimental Output Data 

Case Cost 

Design 
# of 

design 

iterations 

# of line 

searches 

# of 

RBDO 

process 

# of 

validated 

design 

points 

d1 d2 

Algorithm1 −1.8852 5.0570 1.5979 6 41 1 41 

Algorithm2 −1.8848 5.0563 1.5928 - - 5 6 

True −1.8848 5.0566 1.5930 6 11 1 - 

 

Table 6.3 Design and Constraint History of RBDO using Model Validation for Enough 
Experimental Output Data (Algorithm 2 is Used) 

Intermediate 

RBDO optimum 
Cost 

Design Normalized PF after model validation 

d1 d2 G1 G2 G3 

0th −1.9748 5.1050 1.3947 1.4694 4.5826 −1.0000 

1st −1.8616 5.1142 1.6457 −0.3545 −0.1372 −1.0000 

2nd −1.8956 5.0559 1.5689 0.1361 0.2309 −1.0000 

3rd −1.8850 5.0578 1.5924 0.0065 0.0140 −1.0000 

4th −1.8801 5.0544 1.6033 −0.0513 −0.1133 −1.0000 

5th −1.8848 5.0563 1.5928 −0.0024 −0.0111 −1.0000 

Opt −1.8848 5.0563 1.5928 −0.0024 −0.0111 −1.0000 
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6.3. Practical RBDO Procedure using Confidence-Based 

Model Validation for Insufficient Experimental Output 

Data 

 

Proceeding with RBDO using confidence-model validation (or any model 

validation) demands experimental output data at various design configurations or within 

the whole design space.  In addition, full-scale product testing cannot be carried out many 

times at the given design.  The greater challenge is that the moving target becomes a 

more critical issue when insufficient experimental output data is available.  Thus, this 

section proposes a practical RBDO procedure using confidence-based model validation 

for insufficient experimental output data.  In Section 6.3.1, a detailed algorithm for the 

proposed practical procedure of RBDO using confidence-based model validation is 

described.  In Section 6.3.2, it is demonstrated that the proposed practical RBDO can 

provide conservative and reliable optimum design with target confidence even for few 

experimental output data.  Furthermore, it is found that the proposed practical RBDO is 

cost-effective as it requires experimental output data at only a few design configurations.  

 

6.3.1. Practical Procedure for RBDO using Confidence-

Based Model Validation 

In real applications, the moving-target problem is very difficult to solve because 

the uncertainty due to the insufficient experimental output data changes the feasible 

domain significantly as the design changes.  Thus, a practical RBDO procedure is 

proposed to resolve the unpredictable and substantial moving-target problem for 

insufficient experimental output data (Moon et al., 2016; Moon et al., 2017).  

Furthermore, for an efficient optimization process with minimum testing, DDO and 

RBDO are sequentially carried out first without confidence-based model validation.  The 
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practical procedure is similar to algorithm 2 introduced in Section 6.2.2.  Details of the 

practical RBDO process using confidence-based model validation are as follows.   

 

Step 1: For an efficient optimization process with minimum testing, DDO and RBDO are 

sequentially carried out first without confidence-based model validation.  Based on a 

reasonably accurate but biased simulation model, we should be able to obtain a 

conventional RBDO optimum that is not far away from the true RBDO optimum design.   

Step 2: At the conventional RBDO optimum, a confidence-based model validation 

incorporating experimental output data is carried out to obtain the validated simulation 

model (validated simulation output PDF) with confidence-based model bias correction at 

the target confidence level CLTarget. 

Step 3: RBDO iterations are carried out from the previous optimum design.  During the 

RBDO process, previously validated simulation model will be used until the convergence 

of the RBDO.  In other words, during the optimization process, no experimental output 

data is required.  In that way, the moving-target issue can be avoided in the middle of the 

optimization procedure.  

Step 4: At the intermediate RBDO optimum design after the optimization converges, the 

confidence-based model validation is carried out again to obtain the newly validated 

simulation model by updating the confidence-based model bias and collecting the 

experimental output data.  Then, the confidence-based probability of failure is re-

calculated to re-check whether the design satisfies the target probability of failure 

according to the newly validated simulation model.  If the confidence-based probabilities 

of failure using the newly validated simulation model are less than the target probability 

of failure, the current design is accepted as a final RBDO design 𝐱𝑜𝑝𝑡
𝑚𝑜𝑑𝑒𝑙 𝑏𝑖𝑎𝑠.  Otherwise, 

we go to step 3, and additional RBDO processes are repeated from the current 

intermediate RBDO optimum design.  Figure 6.3 depicts the flow chart of the proposed 
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RBDO scheme using confidence-based model validation for an insufficient experimental 

output data. 

 

Figure 6.3 Flowchart of Proposed RBDO Scheme using Confidence-Based Model 
Validation for Insufficient Experimental Output Data 

 

The proposed practical RBDO procedure using confidence-based model 

validation has two unique features.  First, the proposed RBDO provides a conservative 

design even in the presence of uncertainty due to insufficient experimental output data.  

Thus, the designer can have confidence in the reliability of the product, which is 

produced using the conservative design.  The confidence originates from the fact that the 
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probability that probability of failure at an RBDO optimum less than the target 

probability of failure is larger than the target confidence level CLTarget as 

 

    0Target modelbias modelbias Target

opt opt FCL P P G B P     
  

x x . (6-2)                                                    

 

Secondly, the proposed RBDO algorithm is cost-effective in terms of experimental tests.  

It is anticipated that the conventional RBDO optimum without model validation is not far 

from the conservative RBDO optimum if the biased simulation model is reasonably 

accurate.  Then, only a few RBDO processes are needed to get to the final RBDO design 

from the conventional RBDO optimum.  That means it only requires experimental output 

data at a few design configurations (only RBDO optimums).  Moreover, as the procedure 

based on the algorithm 2 in Section 6.2.2, the procedure does not require many 

confidence-based model validations which means experimental output data is required at 

a few design configurations.  This bolsters the cost-effectiveness of the proposed RBDO 

algorithm.  However, if the quality of the biased simulation model is rather poor to begin 

with, the conventional RBDO optimum could be far from the conservative optimum.  The 

proposed method may require a large number of validated design points to obtain the 

conservative optimum design. 

 

6.3.2. Numerical Tests 

As shown in Section 5, two types of biased simulation models (non-conservative 

and conservative simulation models) have been tested to carry out confidence-based 

model validation at the conventional RBDO optimum.  In this section, the proposed 

RBDO procedure using confidence-based model validation in Eq. (6-1) has been applied 
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to two types of biased simulation models.  The detailed mathematical description for the 

non-conservative simulation model and the true model are expressed in Eq. (5-3) and Eq. 

(5-2), respectively, and the conservative simulation models for the small biased and large 

biased models are listed in Table 5.4.  For all results obtained in this section, the target 

confidence level is set to 95%.  For each biased model, two different cases, (1) five data 

and (2) ten data, have been tested to represent the insufficient experimental output data.  

Experimental output data at the conventional RBDO optimum design and the 

intermediate RBDO optimum designs has been randomly obtained from the true output 

PDF to calculate the confidence-based probability of failure.   

First, the RBDO result for non-conservative simulation will be discussed.  Table 

6.4 and Table 6.5 show the intermediate RBDO optimum history and the corresponding 

confidence-based probabilities of failure for the five-data and ten-data cases, respectively.  

Table 6.6 and Table 6.7 show the randomly collected experimental output data at RBDO 

optimums for the five-data and ten-data cases, respectively.  Due to the moving target, 

the cost value and confidence-based probability of failure at certain intermediate RBDO 

optimum designs do not increase (or decrease) monotonically, as shown in both Table 6.6 

and Table 6.7.  As shown in Table 6.8, practical RBDO optimum designs for both cases 

are obtained using only a few validated design points where the experimental output data 

are collected.  The five-data case requires five RBDO processes and six validated design 

points.  In the ten-data case, two RBDO processes are carried out, and the experimental 

output data is provided at three design configurations.  As mentioned previously, the 

practical RBDO procedure saves experimental cost by minimizing the number of 

validated design points.   
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Table 6.4 Practical RBDO Optimization History using Non-Conservative Simulation 
Model for Five-Data Case 

# of 

RBDO 

process 

Intermediate RBDO 

optimum Cost 

Confidence-based PF using 

validated simulation model 

d1 d2 G1 G2 G3 

0th 5.1050 1.3947 −1.9748 26.654% 13.540% 0% 

1st 5.4079 1.8797 −1.7703 3.350% 0.466% 0% 

2nd 5.5862 1.8592 −1.7878 0.119% 5.470% 0% 

3rd 5.1375 1.6045 −1.8800 7.162% 10.202% 0% 

4th 5.2025 1.8216 −1.7873 2.150% 5.223% 0% 

5th 5.1249 1.8534 −1.7721 2.239% 2.077% 0% 

 

Table 6.5 Practical RBDO Optimization History using Non-Conservative Simulation 
Model for Ten-Data Case 

# of 

RBDO 

process 

Intermediate RBDO 

optimum Cost 

Confidence-based PF using 

validated simulation model 

d1 d2 G1 G2 G3 

0th 5.1050 1.3947 −1.9748 5.136% 26.833% 0% 

1st 4.9811 1.7082 −1.8335 8.124% 12.393% 0% 

2nd 5.0099 1.9914 −1.7121 1.160% 0.898% 0% 
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Table 6.6 Randomly Collected Experimental Output Data for Non-Conservative 
Simulation Model (Five-Data Case) 

Intermediate 

RBDO optimum 

Five experimental output data 

G1 G2 

0th 
[−0.0378, −1.4292, −0.2142, 

−0.9064, −0.1140] 

[−2.4262, −0.4494, −0.7760, 

−0.0516, −2.9991] 

1st 
[−1.6184, −2.5108, −2.6096, 

−1.9655, −0.9441] 

[−0.4178, −0.5234, −0.7826, 

−0.5980, −0.4897] 

2nd 
[−1.9026, −2.6884, −2.6726, 

−2.6048, −2.2321] 

[−0.2748, −0.2889, −0.3653, 

−0.1817, −0.4441] 

3rd 
[−0.5890, −1.6790, −0.6981, 

−1.7457, −0.6907] 

[−0.8380, −0.2661, −0.6090, 

−0.2346, −1.0509] 

4th 
[−1.3403, −2.2584, −1.6402, 

−1.0239, −1.9037] 

[−0.2902, −0.6271, −0.2787, 

−0.6033, −0.7414] 

5th 
[−2.4120, −1.0624, −2.0035, 

−2.3934, −1.8683] 

[−0.5632, −0.3905, −0.5301, 

−0.8323, −0.6129] 
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Table 6.7 Randomly Collected Experimental Output Data for Non-Conservative 
Simulation Model (Ten-Data Case) 

Intermediate 

RBDO optimum 

Ten experimental output data 

G1 G2 

0th 

[−1.1510, −0.5821, −2.1442, 

−1.2520, −0.5976, −1.3227, 

−1.1813, −1.9981, −0.6438, 

−1.5306] 

[−0.1300, 0.0863, −0.3453, 

−0.4378, −0.4961, −0.5410, 

−0.0721, −0.6692, −0.0784, 

−0.5094] 

1st 

[−1.3102, −0.4346, −1.6835, 

−1.9432, −1.5170, −0.1140, 

−0.8767, −1.6396, −1.3167, 

−1.6773] 

[−0.3495, −2.1485, −0.6986, 

−0.5947, −0.7736, −5.0950, 

−0.9484, −0.2957, −0.3984, 

−0.5473] 

2nd 

[−1.3605, −2.4659, −1.8541, 

−1.2404, −1.0382, −1.7313, 

−2.5237, −1.1171, −1.4300, 

−1.4960] 

[−0.7843, −0.6619, −0.7204, 

−0.5002, −1.1533, −0.5082, 

−0.7389, −0.8567, −0.7513, 

−0.7675] 

 

Table 6.8 shows the confidence-based probability of failure and confidence level 

at the practical RBDO optimum using confidence-based model validation for the two data 

cases.  The confidence level at both practical RBDO optimum designs can be calculated 

using the CDF value of the probability of failure at the target probability of failure (see 

Section 4.3.3).  The confidence level at both practical RBDO optimum designs is always 

larger than the target confidence level of 95% because the optimization process is 

terminated once the confidence-based probability of failure is less than the target 

probability of failure, 2.275%, as demonstrated in Eq. (6-2).  
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Table 6.8 Summary of Practical RBDO Optimum using Confidence-Based Model 
Validation for Insufficient Experimental Output Data 

Case 

# of 

RBDO 

processes 

# of 

validated 

design 

points 

Confidence-based PF Confidence level 

G1 G2 G1 G2 

5 data 5 6 2.239% 2.077% 95.2% 95.6% 

10 data 2 3 1.160% 0.898% 98.9% 99.7% 

 

Table 6.9 RBDO Optimum Summary and True Reliability Analysis at Practical RBDO 
Optimum Designs for Non-Conservative Simulation Model 

 Optimum design 

Cost 

True PF using true output 

function 

 G1 G2 G1 G2 

Conventional 

RBDO 
5.1050 1.3947 −1.9748 5.550% 12.700% 

Proposed RBDO 

(5 data) 
5.1249 1.8534 −1.7721 0.395% 0.174% 

Proposed RBDO 

(10 data) 
5.0099 1.9914 −1.7121 0.234% 0.011% 

True RBDO 5.0566 1.5930 −1.8848 2.277% 2.269% 
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It is found that, at both practical RBDO optimum designs, the confidence-based 

probability of failure satisfies the target probability of failure of 2.275%.  To ensure that 

the RBDO optimum designs indeed satisfy the target probability of failure, reliability 

analysis using the true output function has been carried out at practical RBDO optimum 

designs for both cases.  As shown in Table 6.9, at the practical RBDO optimum designs, 

the true probability of failure is less than the target probability of failure while the 

conventional RBDO without model validation violates the target value.  Therefore, the 

obtained practical RBDO optimum designs using the proposed method are truly 

conservative and reliable.  However, it can be noted that the cost values at the practical 

RBDO optimum designs have been increased to −1.7721 (five-data case) and −1.7121 

(ten-data case) from the one at the conventional RBDO optimum (−1.9748).  This 

indicates that, to achieve the conservative design with confidence in compensation for the 

uncertainty due to insufficient test data, the cost values will be increased. 

The RBDO optimums using confidence-based model validation for the 95% target 

confidence level are graphically illustrated in Figure 6.4.  The proposed method forces 

the practical RBDO optimum design to move upward in the direction of increasing cost 

while achieving more conservativeness of design.  On the other hand, the conventional 

RBDO optimum is located closer to the true limit state function, and thus it eventually 

violates the target probability of failure.  Throughout this example, it is shown that the 

proposed confidence-based model validation and the practical RBDO procedure can 

successfully find a conservative RBDO optimum design that satisfies the target 

probability of failure even in the presence of limited experimental output data.   
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Figure 6.4 Plot of Practical RBDO Optimum using Confidence-Based Model Validation 
for Non-Conservative Simulation Model 

We also have investigated RBDO results when the biased simulation model is 

conservative so that the conventional RBDO design without model validation is reliable 

readily.  As mentioned at the beginning of this section, for a conservative simulation 

model, two cases have been tested: (1) a small biased model, and (2) a large biased 

model.  We are curious about whether or not the final RBDO optimum design with model 

validation can be less conservative than the conventional RBDO design and still satisfy 

the target probability of failure.  First, the RBDO results for the small biased model are 

discussed.  Table 6.10 and Table 6.11 show the intermediate RBDO optimum history and 

confidence-based probability of failure for the five-data case and the ten-data case, 

respectively.  The experimental output data used in the intermediate RBDO optimum 

designs for the five-data case and the ten-data case are expressed in Table 6.12 and Table 

6.13, respectively.              
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Table 6.10 Practical RBDO Optimization History using Small Biased Conservative 
Simulation Model for Five-Data Case 

# of 

RBDO 

process 

Intermediate RBDO 

optimum Cost 

Confidence-based PF using 

validated simulation model 

d1 d2 G1 G2 G3 

0th 5.1035 1.7491 −1.8163 15.486% 8.243 % 0% 

1st 5.3733 2.0688 −1.6932 1.204% 4.858% 0% 

2nd 5.1309 2.0167 −1.7044 1.951% 2.723% 0% 

3rd 5.0835 2.0025 −1.7090 2.678% 6.943% 0% 

4th 5.0158 2.0772 −1.6767 1.065% 0.117% 0% 

 

Table 6.11 Practical RBDO Optimization History using Small Biased Conservative 
Simulation Model for Ten-Data Case 

# of 

RBDO 

process 

Intermediate RBDO 

optimum Cost 

Confidence-based PF using 

validated simulation model 

d1 d2 G1 G2 G3 

0th 5.1035 1.7491 −1.8163 9.495% 5.071 % 0% 

1st 5.3012 1.9662 −1.6932 5.513% 0.258% 0% 

2nd 5.5846 2.0159 −1.7044 2.394% 9.236% 0% 

3rd 5.4532 2.1073 −1.7090 0.544% 3.579% 0% 

4th 5.1984 1.9591 −1.6767 0.265% 0.874% 0% 
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Table 6.12 Randomly Collected Experimental Output Data for Small Biased 
Conservative Simulation Model (Five-Data Case) 

Intermediate 

RBDO optimum 

Five experimental output data 

G1 G2 

0th 
[−0.9177, −1.4563, −0.0345, 

−0.5472, −1.1357] 

[−0.5082, −0.4535, −5.6262, 

−2.2081, −0.8607] 

1st 
[−2.0136, −1.2870, −2.1423, 

−2.2788, −2.3255] 

[−0.6930, −0.4374, −0.4603, 

−0.2623, −1.1971] 

2nd 
[−2.5097, −2.0830, −1.0282, 

−1.2696, −1.4219] 

[−0.4221, −0.7682, −0.9220, 

−0.4286, −0.3833] 

3rd 
[−1.4506, −1.2960, −1.1429, 

−1.1582, −0.8082] 

[−0.6604, −0.4387, −0.2109, 

−0.6800, −0.8879] 

4th 
[−2.0825, −1.9727, −1.2861, 

−2.3064, −2.7941] 

[−0.7641, −0.7529, −0.9006, 

−0.9762, −1.1803] 
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Table 6.13 Randomly Collected Experimental Output Data for Small Biased 
Conservative Simulation Model (Ten-Data Case) 

Intermediate 

RBDO optimum 

Ten experimental output data 

G1 G2 

0th 

[−2.2122, −0.1968, −1.4412, 

−1.7196, −0.2557, −1.9938, 

−0.9931, −1.3406, −1.1578, 

−0.8870] 

[−0.8477, −3.0290, −0.5097, 

−0.3907, −2.4758, −0.6259, 

−0.2526, −0.3785, −0.5176, 

−0.2935] 

1st 

[−1.9863, −2.7222, −2.3337, 

−0.5593, −2.1589, −0.6403, 

−2.2950, −3.3496, −2.5029, 

−1.6981] 

[−0.5460, −1.1360, −0.7345, 

−1.7192, −0.6122, −1.1501, 

−0.5678, −0.7434, −0.7488, 

−0.6748] 

2nd 

[−1.2341, −1.8933, −2.4484, 

−2.6914, −1.0387, −3.4111, 

−2.8837, −3.5692, −1.8048, 

−2.3217] 

[−0.2775, −0.2275, −0.2376, 

−0.6469, −0.2766, −0.1595, 

−0.1865, −0.5070, −0.3490, 

−0.5384] 

3rd 

[−2.0593, −1.7815, −2.1279, 

−1.9700, −1.3348, −1.9166, 

−2.1224, −2.7818, −2.7351, 

−2.9298] 

[−0.3533, −0.4837, −0.7372, 

−0.2890, −0.4314, −0.3855, 

−0.2529, −0.6574, −0.8634, 

−0.9855] 

4th 

[−2.2152, −1.6362, −1.8290, 

−1.4246, −1.8618, −1.4189, 

−1.7773, −2.5101, −2.5630, 

−2.2779] 

[−0.6515, −0.5497, −0.4333, 

−0.4659, −0.7673, −0.6479, 

−0.4991, −0.6242, −1.0057, 

−0.7204] 
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Confidence-based probability of failure satisfies the target probability of failure, 

2.275%, after the four RBDO processes for both data cases.  Experimental output data 

was required at only five design configurations to obtain the final RBDO optimum 

design.  To check whether the final RBDO optimum design truly satisfies the target 

probability of failure, true reliability analysis using the true output function has been 

carried out at the final RBDO optimum designs, as shown in Table 6.14.  It is found that 

the true probabilities of failure at the final RBDO optimum designs for both data cases 

satisfy the target probability of failure and provide conservative design.  It can be seen 

that the true probabilities of failure at the proposed RBDO optimums are lower than those 

obtained at the conventional RBDO optimum.  This, therefore, indicates that the 

proposed RBDO provides a more reliable design to consider the uncertainty due to 

insufficient test data.   

Accordingly, the cost value at the proposed RBDO optimums using five data and 

ten data has been increased compared to the cost value at conventional RBDO design.  

The proposed RBDO optimums using confidence-based model validation have been 

illustrated in Figure 6.5.  It can be noted that the conventional RBDO is very close to the 

true RBDO optimum, which means the original simulation model is very accurate.  

However, we do not know how accurate the simulation model is and how close the 

conventional RBDO optimum design is to the true RBDO optimum in advance.  As 

shown in Figure 6.5, the proposed RBDO optimums are far away from the true limit 

states—further than the conventional RBDO optimum.  In other words, the proposed 

RBDO yields a more conservative design than the conventional RBDO.  Thus, it is 

highlighted that the proposed RBDO could make a more reliable design than the 

conventional RBDO design when the simulation model is originally very accurate (i.e., 

small biased model).  In order to build confidence in the product designed with lacking 

experimental output data, the proposed RBDO using confidence-based model validation 

could yield a more conservative design than the conventional RBDO design. 
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Table 6.14 RBDO Optimum Summary and True Reliability Analysis at Practical RBDO 
Optimum Designs for Small Biased Conservative Simulation Model 

 Optimum design 

Cost 

True PF using true output 

function 

 G1 G2 G1 G2 

Conventional 

RBDO 
5.1035 1.7491 −1.8163 0.803% 0.571% 

Proposed RBDO 

(5 data) 
5.0158 2.0772 −1.6767 0.129% 0.006% 

Proposed RBDO 

(10 data) 
5.1984 1.9591 −1.7300 0.152% 0.110% 

True RBDO 5.0566 1.5930 −1.8848 2.277% 2.269% 

 

Figure 6.5 Plot of Practical RBDO Optimum using Confidence-Based Model Validation 
for Small Biased Conservative Simulation Model 
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Secondly, the RBDO results for the large biased model are discussed.  Table 6.15 

and Table 6.16 list the intermediate RBDO optimum design history and the confidence-

based probability of failure using five data and ten data, respectively.  Experimental 

output data at the intermediate RBDO optimum designs has been randomly drawn from 

the true output PDF, as shown in Table 6.17 for the five-data case and Table 6.18 for the 

ten-data case.  Notice that, even though the 0th intermediate RBDO optimum design 

(conventional RBDO design) already satisfies the target probability of failure for both 

data cases, the confidence-based model validation is carried out, followed by the RBDO 

iterations.  As explained in Section 6.3.1, at the conventional RBDO optimum design, the 

confidence-based model validation is necessarily carried out even though the design 

satisfies the target probability of failure because we could obtain a better and reliable 

optimum design.  As shown in Table 6.15 and Table 6.16, final RBDO optimum designs 

are obtained after five RBDO processes for the five-data case and after two RBDO 

processes for the ten-data case.  Experimental output data was collected at six design 

points for the five-data case and three design points for the ten-data case.  It is noted that 

the number of RBDO processes required to satisfy the target probability of failure is not 

uniquely determined for every problem, but rather depends on how good the 

experimental output data collected at the given design are.   
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Table 6.15 Practical RBDO Optimization History using Large Biased Conservative 
Simulation Model for Five-Data Case 

# of 

RBDO 

process 

Intermediate RBDO 

optimum Cost 

Confidence-based PF using 

validated simulation model 

d1 d2 G1 G2 G3 

0th 5.5377 2.3745 −1.5892 0.235% 0.915% 0% 

1st 5.3761 2.0785 −1.6895 0.443% 2.445% 0% 

2nd 5.0556 1.8834 −1.7582 0.551% 2.458% 0% 

3rd 4.8009 1.7098 −1.8340 16.601% 11.224% 0% 

4th 4.7458 2.3783 −1.5503 2.788% 0.210% 0% 

5th 5.0512 2.2504 −1.6082 0.897% 0.030% 0% 

 

Table 6.16 Practical RBDO Optimization History using Large Biased Conservative 
Simulation Model for Ten-Data Case 

# of 

RBDO 

process 

Intermediate RBDO 

optimum Cost 

Confidence-based PF using 

validated simulation model 

d1 d2 G1 G2 G3 

0th 5.5377 2.3745 −1.5892 0.232% 1.603% 0% 

1st 5.3123 2.0143 −1.6762 0.781% 4.202% 0% 

2nd 5.0797 2.0120 −1.7050 1.321% 0.909% 0% 
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Table 6.17 Randomly Collected Experimental Output Data for Large Biased 
Conservative Simulation Model (Five-Data Case) 

Intermediate 

RBDO optimum 

Five experimental output data 

G1 G2 

0th 
[−3.3197, −2.2801, −1.9570, 

−3.3137, −3.8047] 

[−1.1037, −0.7163, −0.6349, 

−0.8417, −0.5484] 

1st 
[−1.9622, −2.6826, −1.4754, 

−3.0181, −1.8441] 

[−0.7222, −0.7548, −0.4691, 

−0.7795, −0.5660] 

2nd 
[−1.8661, −1.6221, −1.1792, 

−1.9949, −1.3853] 

[−0.5772, −0.7603, −0.6656, 

−0.9293, −0.5974] 

3rd 
[−0.7282, −0.4090, −1.5982, 

−0.0867, −0.7415] 

[−1.2194, −3.0073, −0.5059, 

−5.9754, −1.0628] 

4th 
[−2.6470, −2.7288, −0.9589, 

−2.0105, −1.9609] 

[−1.4881, −1.4400, −2.4320, 

−1.0063, −1.5863] 

5th 
[−1.6148, −2.2207, −2.7987, 

−1.9818, −1.2520] 

[−0.9772, −0.9661, −0.7568, 

−0.7307, −0.9164] 
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Table 6.18 Randomly Collected Experimental Output Data for Large Biased 
Conservative Simulation Model (Ten-Data Case) 

Intermediate 

RBDO optimum 

Ten experimental output data 

G1 G2 

0th 

[−2.0101, −2.3145, −2.6729, 

−3.1660, −2.9781, −3.3364, 

−2.2865, −1.7495, −2.7081, 

−3.7362] 

[−0.6823, −0.6730, −0.5755, 

−0.8095, −0.4079, −0.9141, 

−0.8692, −0.4732, −0.8181, 

−0.9545] 

1st 

[−2.3715, −2.7760, −1.9716, 

−1.2196, −2.2557, −2.2234, 

−1.4541, −2.6870, −1.5031, 

−2.0254] 

[−0.7833, −0.8598, −0.6610, 

−0.6651, −0.3616, −0.9591, 

−0.3480, −0.4728, −0.4152, 

−0.6768] 

2nd 

[−2.7760, −1.1744, −2.2308, 

−2.1686, −0.8978, −2.2394, 

−2.2758, −1.2262, −1.0223, 

−1.6620] 

[−1.2636, −0.6514, −0.8591, 

−0.5896, −1.1660, −0.9604, 

−0.8515, −0.6046, −0.8871, 

−0.6867] 

 

To ensure that the proposed RBDO optimum designs truly satisfy the target 

probability of failure, true reliability analysis using the true output function has been 

performed at the final RBDO optimum designs, as listed in Table 6.19.  The true 

probability of failure at the proposed RBDO optimums for both data cases is less than the 

target probability of failure, and they are conservative.  For the G1 constraint, the 

proposed RBDO is much less conservative than the conventional RBDO.  For the G2 

constraint, the true probability of failure at the proposed RBDO optimums is smaller than 

the one at the conventional RBDO optimum.  It is worth nothing that the proposed RBDO 
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optimum is less conservative than the conventional RBDO optimum and the cost value 

decreases from −1.5892 to −1.6080 for the five-data case and to −1.7050 for the ten-data 

case.  It is found that when we have more data, as in the ten-data case, the proposed 

RBDO is able to decrease cost value more significantly.  The final RBDO optimums 

using confidence-based model validation for the large biased model are illustrated in 

Figure 6.6.  It is evident that the conventional RBDO optimum is very far from the true 

RBDO optimum, which confirms that original simulation model is significantly biased.  

The proposed RBDO optimums for both data cases are closer to the true RBDO optimum 

compared to the conventional RBDO optimum, which leads to reliable yet less 

conservative design.  Therefore, it is concluded that the proposed RBDO method can 

provide a cost-effective and still reliable design when the simulation model is 

significantly biased.    

 

Figure 6.6 Plot of Practical RBDO Optimum using Confidence-Based Model Validation 
for Large Biased Conservative Simulation Model 
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Table 6.19 RBDO Optimum Summary and True Reliability Analysis at Practical RBDO 
Optimum Designs for Large Biased Conservative Simulation Model 

 Optimum design 

Cost 

True PF using true output 

function 

 G1 G2 G1 G2 

Conventional 

RBDO 
5.5377 2.3745 −1.5892 0.001% 1.376% 

Proposed RBDO 

(5 data) 
5.0512 2.2504 −1.6082 0.029% 0.007% 

Proposed RBDO 

(10 data) 
5.0797 2.0120 −1.7050 0.162% 0.020% 

True RBDO 5.0566 1.5930 −1.8848 2.277% 2.269% 
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CHAPTER 7                                                                                                      

CONFIDENCE-BASED RELIABILITY ASSESSMENT CONSIDERING BOTH 

PARAMETER UNCERTAINTY AND MODEL BIAS FOR INSUFFICIENT INPUT 

AND EXPERIMENTAL OUTPUT DATA 

Previous sections assume that true input distribution are known and thus handle 

only limited experimental output data when simulation model is biased.  However, in real 

applications, true input distribution models, which require large number of input data, are 

not available due to high cost in experimental or coupon testing.  The uncertainty of input 

distribution model due to the limited number of input data is called parameter 

uncertainty.  In this section, we present a new methodology of confidence-based 

reliability assessment for more practical situation in which parameter uncertainty, model 

bias and the uncertainty due to insufficient experimental output data exist.  To combine 

both uncertainties caused by limited input/output data and model bias, a hierarchical 

Bayesian model is formulated to quantify the uncertainty of reliability.  Since this section 

focuses on reliability assessment, not RBDO, numerical results are represented using the 

reliability (probability of success) instead of the probability of failure (1−reliability).  

Section 7.1 explains how to quantify the uncertainty induced by limited input 

data.  Section 7.2 describes the hierarchical Bayesian model and explains the 

quantification of uncertainty of reliability considering both limited number of input data 

and output data.  Section 7.3 and Section 7.4 present numerical tests to verify the 

proposed confidence-based reliability assessment using two engineering examples: 9-D 

cantilever tube-shaped beam and 11-D vehicle side impact problem, respectively. 
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7.1. Quantification of Uncertainty Induced by Limited 

Number of Input Data 

 

In the presence of limited number of input data, input distribution model becomes 

uncertain.  In the meantime, input distribution model can be defined as the function of 

input distribution type, ζ, and input distribution parameter, ψ.  Thus, input distribution 

type and parameters follow certain probability distribution, not being a specific type or 

constant values, in the presence of the limited number of input data.  Using Bayesian 

approach, the probability distributions of input distribution type and distribution 

parameters can be obtained given limited number of input data (Cho et al., 2016).   

Input distribution parameter consists of input mean 𝜇𝑖, and input variance 𝜎𝑖
2 as 

𝛙𝒊 = [𝜇𝑖, 𝜎𝑖
2].  Input variance, 𝜎𝑖

2 , for ith independent random variable Xi given 

corresponding data 𝐱𝑖
𝑒, follows inverse-gamma distribution as  

 

  2
2 11

~ IG ,
2 2

e i
i i

nd snd


 
 
 

x , (7-1)                                                    

 

where nd is the number of input data and 𝑠𝑖
2 is the sample variance.  Input mean 𝜇𝑖 

follows normal distribution given input variance and input data as  

 

2
2 , ~ N ,e i

i i i i
nd


 

 
 
 

x x , (7-2)                                                    

 

where �̅�𝑖 is the mean of input data.  Once probabilities of distribution parameters are 

obtained, the probability of input distribution type can be evaluated as (Cho et al., 2016)    

 

     , ,e eP P P  ψ x x ψ ψ , (7-3)                                                    



www.manaraa.com

93 
 

 
 

 

where  ,eP x ψ  is the likelihood function and  P  ψ  is the probability distribution 

of input distribution type, given distribution parameters, which is constant assuming that 

all candidate distribution types are equally probable before having the input data.  Since it 

is not easy to cover all input distribution types in the evaluation of Eq. (7-3), seven 

marginal distribution types are considered as candidate distribution types (Normal, 

Lognormal, Weibull, Gumbel, Gamma, Extreme, and Extreme Type II).  Once the 

candidates of input distribution model is obtained, the candidates of biased simulation 

output distribution for each candidate of input distribution model can be generated using 

(biased) simulation model.      

 

7.2. Quantification of Uncertainty Distribution of 

Reliability Considering Both Limited Number of Input and 

Output Data 

 

In the presence of uncertain input distribution models induced by limited number 

of input data, many possible candidates of biased simulation output distribution exist as 

explained in Section 7.1.  Thus, one-level Bayesian model that is proposed Section 4 is 

not appropriate; hierarchical Bayesian model is proposed in this section.  Using 

hierarchical Bayesian analysis, uncertainty distribution of reliability can be obtained 

considering limited number of experimental output data under uncertain input distribution 

models.   

In Section 7.2.1, further investigation of kernel function, which is used in AKDE 

for modeling output PDF, is carried out.  Section 7.2.2 explains the proposed hierarchical 

Bayesian analysis to obtain the uncertainty distribution of reliability accounting for both 
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uncertainties due to limited input/output data.  Section 7.2.3 describes how to assess 

confidence-based reliability and discusses confidence level.    

 

7.2.1. Investigation of Kernel Function in AKDE Used to 

Model Output PDF 

As for modeling of target output PDF, AKDE is still used.  Further investigation 

of kernel function, which is used in AKDE, is carried out in this section.  In Section 4, as 

for one-level Bayesian model considering only limited number of output data, Gaussian 

kernel – the most popular kernel – was chosen.  However, even though Gaussian kernel is 

popular due to its convenient mathematical properties such as infinitely differentiable 

everywhere, it is found that Gaussian kernel has infinite support size (see Figure 7.1) 

which leads to a significant computational disadvantage.  Epanechnikov kernel is optimal 

in the sense of minimizing a mean square error (Epanechnikov, 1969); but, its first 

derivative is not continuous as shown in Figure 7.1.  On the other hand, both biweight 

and triweight kernels have smooth property as shown in Figure 7.1 and have distinct 

computational advantage due to finite support.  In this section, triweight kernel is chosen 

because it is smoother and the more recently developed than biweight kernel.  Figure 7.2 

depicts the effect of each kernel on fitting output PDF given insufficient data.  It is 

noticed that the shape of density function using Epanechnikov has multiple non-smooth 

points while triweight yields smoother density function. 
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  (a)  Epanechinikov    (b) Biweight 

            

                 (c) Triweight    (d) Gaussian 

Figure 7.1 Shape of Different Kernel Functions 

Figure 7.2 Kernel Density Estimation using Different Kernel Function Given Insufficient 
Data 
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7.2.2. Quantification of Uncertainty Distribution of 

Reliability  

A hierarchical Bayesian model is formulated to combine uncertainties induced by 

input/output test data.  The joint PDF of bandwidth, input distribution type and input 

distribution parameters given input/output test data,  0 , , | ,e eP h  ψ y x , can be derived 

by 

 

     

     

0 0 0

0 0

, , | , , , , , ,

, , , , , ,

e e e e e

e e e e

P h L h P h

L h P h P

  

  





ψ y x y ψ x ψ x

y ψ x ψ x ψ x
, (7-4)                                                    

 

where  0 , , ,e eL h y ψ x  is the likelihood function, which can be evaluated using AKDE 

(See Eq. (4-3)) and  0 , , eP h  ψ x  is the prior distribution of bandwidth given input 

distribution type ζ and input distribution parameter ψ.  Here, distribution parameters of 

prior distribution, ζ and ψ, are defined as hyper parameters.   , eP  ψ x  is hyper prior 

(distribution of hyper parameters) for ζ and ψ, which can be obtained as the product of 

the probability of input distribution parameters,  , eP  ψ x , and the probability of input 

distribution type,  eP ψ x .   , eP  ψ x  can be obtained as the product of Eqs. (7-1) and 

(7-2), and  eP ψ x  is same as Eq. (7-3).  It is noted that the hierarchical Bayesian model 

in Eq. (7-4) additionally includes the hyper prior term, which represents uncertain input 

distribution models, whereas single level Bayesian model in Eq. (4-7) does not. 

 With regard to prior distribution of bandwidth  0 , , eP h  ψ x  in Eq. (7-4), further 

improvement has been carried out, compared to the prior distribution used in Eq. (4-6), as   
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where prior sample size np is equal to the number of experimental output data, K is type 

of kernel function, and  , ,random e

s  ψ x  is the randomly-selected sample standard 

deviation (sample size is equal to the number of experimental output data) of biased 

simulation output distribution given input distribution model.  First, it is worth noting that 

prior sample size properly reflects limited number of output data; whereas, in Eq. (4-6), 

prior sample size np was arbitrary, which is problem-dependent.  Second, the mean of 

prior distribution (optimal bandwidth using normal reference rule-of-thumb), a, is derived 

using triweight kernel, not Gaussian kernel and thus c0(K) in Eq. (7-5) is 3.169 as shown 

in Table 7.1, which is larger than one obtained using Gaussian kernel (Henderson & 

Parmeter, 2012).  As a consequence, the estimated density function with triweight kernel 

tends to be wider and the reliability estimation using triweight kernel becomes more 

conservative than the one using Gaussian kernel.  Lastly, instead of using the standard 

deviation of simulation output distribution, sample standard deviation with np sample size 

is randomly chosen from the simulation output distribution.  As a result, mean of prior 

distribution for bandwidth can be adaptively adjusted depending on number of output 

data.  

Table 7.1 Normal Reference Rule-of-Thumb Constants for Second Order Kernels 

Type of kernel, K C0 in Eq. (7-5) 

Uniform 1.8431 

Epanechinikov 2.3449 

Gaussian 1.0592 

Biweight 2.7779 

Triweight 3.1690 
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After the joint PDF of bandwidth, input distribution type, and input distribution 

parameters are obtained, the CDF of reliability given limited number of input/output test 

data can be formulated as  
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where  0| , , , ,e ef h  ψ y x  is the conditional PDF of reliability, which becomes Dirac 

delta measure because reliability can be uniquely evaluated once the bandwidth and input 

distribution model given input/output data are determined.  Meanwhile, the integration in 

Eq. (7-6) cannot be analytically obtained so that it is numerically evaluated using MCS 

integration as 
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Here, nMCSh is the number of MCS sample in the hierarchical Bayesian model.  

     

0 , ,i i ih  ψ  are ith realization of bandwidth, input distribution type and input distribution 

parameter, respectively.  First, the realization of ψ can be generated from Eqs. (7-1) and 

(7-2).  Afterwards, the realization of ζ is obtained in accordance with  , eP  ψ x .  Finally, 

the realization of h0 needs to be generated using the MCMC sampler in accordance with 
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Eq. (7-4).  The Metropolis-Hasting algorithm has been used to obtain the random 

realization of h0.  At each MCMC sample, the output PDF and corresponding reliability 

can be uniquely determined using AKDE.   

 

7.2.3. Confidence-Based Reliability and Confidence Level 

The proposed method suggests to use a conservatively selected reliability value 

based on the complementary CDF (CCDF), which is defined as 1–CDF, of reliability.  In 

the CCDF, higher percentile indicates more conservative estimation of reliability.  This is 

why the percentile is referred to as the confidence level.  Similar to the confidence-based 

model validation in Section 4.3.3, users can select target confidence level CLtarget.  The 

reliability at the target confidence level is the confidence-based reliability as shown in 

Figure 7.3.  The corresponding output PDF that produces confidence-based reliability is 

the confidence-based target output PDF.  Once the confidence-based target output PDF is 

selected, the biased simulation model output PDF can be validated against it.   

The validation process to obtain validated simulation model considering both limited 

number of input/output test data is left as future research.  In the following sections 7.3 

and 7.4, the proposed confidence-based reliability assessment considering both 

uncertainties induced by limited input/output test data is demonstrated using engineering 

examples. 

Figure 7.3 Confidence-Based Reliability 
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7.3. Numerical Test using 9-D Cantilever Tube Shape 

Beam 

 

In this section, 9-D cantilever tube-shaped beam shown in Figure 7.4 is 

considered to demonstrate the proposed confidence-based reliability assessment (Arora, 

2004).  There are nine input random variables as shown in Table 7.2.  Two constraints are 

considered as  

 

Constraint 1: maximum stress at the fixed support point A (σmax) – yield strength (σY) ≤ 0 

Constraint 2: torsion (T) – critical buckling torsion (Tcr) ≤ 0 

 

Figure 7.4 Cantilever Tube-Shaped Beam 

In this example, it is assumed that true input distributions for only three input variables 

(inner diameter, length and thickness) are known because the variability of geometry 

parameter can be easily identified.  In contrast, only limited number of data is given for 

the rest of six variables, which are either material properties or loading parameters. 
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Table 7.2 Input Random Variable Information for 9-D Cantilever Tube-Shaped Beam 

Description 
True input distribution 

Remark 
Type Mean STD 

di 
Inner diameter 

(mm) 

Normal 

189.8126 10 
True input 

distribution is 

known 
t 

Thickness 

(mm) 
1.6611 0.08 

L Length (mm) 500 10 

P Force (N) 50,000 5,000 

Only limited 

number of data 

is given 

T Torsion (N-mm) 10,000,000 1,000,000 

θ Angle (°) 0 10 

E 
Young’s modulus 

(MPa) 
200,000 10,000 

ν Poisson’s ratio 
Log 

Normal 0.26 0.026 

σY 
Yield strength 

(Mpa) 

Normal 220 15.4 

  

To verify the proposed method, two models are considered.  First, as a true model, 

analytical expressions for maximum stress, σmax, and critical buckling torsion, Tcr, are 

treated as true physical output, which represent real physics.  Then, true constraints 

𝐺𝑖
𝑡𝑟𝑢𝑒(𝐱) can be summarized as 
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Here, A is cross sectional area defined as A=π(d0 – t)t, I is the section modulus defined as 

𝐼 = 𝜋/64(𝑑0
4 − (𝑑0 − 2𝑡)4), and do is the outer diameter defined as do=di+2t.  We can 

generate limited number of physical output test data using Eq. (7-8) as the outcome of 

physical testing.  Secondly, biased constraints Gi(x) is formulated by subtracting bias 

(assumed unknown) Bi(x) to the true (assumed unknown) constraint 𝐺𝑖
𝑡𝑟𝑢𝑒(𝐱) as 𝐺𝑖(𝐱) =

𝐺𝑖
𝑡𝑟𝑢𝑒(𝐱) − 𝐵𝑖(𝐱) .  The unknown biases for two constraints are mathematically 

constructed as 
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It is noted that only biased constraint Gi(x) is used as the simulation model to 

demonstrate the proposed method assuming we do not know true constraint and bias.  In 

this example, analytical function of the biased constraint is directly used to evaluate 

output response at the MCS samples in the sampling-based reliability analysis.  To check 

the error of biased simulation model, non-normalized output mean value for biased 

constraints G1 (maximum stress) and G2 (critical buckling torsion) are compared with 

those obtained using true model in Eq. (7-8).  As shown in Table 7.3, the error level is 
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around 20% for G1 and 15% for G2, which indicates that the biased simulation model is 

fairly inaccurate.  This biased simulation model is used to demonstrate the proposed 

confidence-based reliability assessment given lack of input/output test data.  For 

comparison, two experimental situations are studied in each of following Section 7.3.1 

and 7.3.2.    

Table 7.3 Accuracy of Biased Simulation Model for 9-D Cantilever Tube-Shaped Beam 

 

 

Non-normalized output mean 

G1 G2 

Biased simulation model (𝑎) 167.31 12,615,870 

True model (𝑏) 210.14 10,958,273 

Error (
𝑏−𝑎

𝑏
× 100) 20.38% −15.13% 

 

7.3.1. Data Case 1: Limited Number of Input and Output 

Test Data 

In this section, limited number of test data is considered and applied to the 

proposed confidence-based reliability assessment.  To generate limited number of input 

test data, 30 data for each of six input variables, which are material properties and loads 

are randomly drawn from its true input distribution in Table 7.2.  Figure 7.5 depicts 30 

input data for each of six variables and their true input distributions.  Figure 7.6 describes 

how 20 output test data are distributed, which are randomly generated from the true 

output distribution for each constraint.  As for both constraints, 20 data each are not 

biased since they are well distributed.  More data are densely located around at the mean 

value and few data are collected at the tail part.   
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Before applying the proposed confidence-based reliability assessment, simulation 

based-reliability assessment is carried out.  First, a best-fit input distribution model is 

obtained, which is approximated by maximum likelihood estimation given input data.  

After that, the best-fit input distribution is fed into the biased simulation model to obtain 

biased output distribution.  Once the output distribution is available, the corresponding 

reliability can be evaluated.   

 

 

(a) Force     (b) Torsion 

 

(c) Angle     (d) Young’s modulus 
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(e) Poisson’s ratio     (f) Yield strength 

Figure 7.5 30 Input Data Randomly Drawn from True Input Distribution 

(a) Constraint 1     (b) Constraint 2 

Figure 7.6 20 Output Test Data Randomly Drawn from True Output Distribution 

Given 30 input data and biased model, simulation-based reliability is evaluated as 

88.86% for G1 and 93.48% for G2.  On the other hand, the true reliability is only 63.91% 

for constraint 1 and 69.97% for constraint 2.  Figure 7.7 illustrates the comparison of 

output PDF between the true model and biased simulation model.  It is noted that biased 
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simulation output PDF is shifted to left to the true one, which indicates that the biased 

simulation model overestimates the true reliability.  Hence, if the biased simulation 

output PDF with best-fit input distribution is used, the simulation result could falsely 

predict the current design is reliable.        

 

Figure 7.7 Comparison of True Output PDF and Biased Simulation Output PDF (Left: 
Constraint 1 and Right: Constraint 2) 

Given 30 input data/20 output data shown in Figures 7.5  and 7.6 and the biased 

simulation model, the proposed confidence-based reliability assessment produces the 

uncertainty distribution (CCDF) of reliability as shown in Figure 7.8.  To draw the CCDF 

of reliability, nMCSh in Eq. (7-7) are set to 1000.  Thus, 1000 possible reliabilities are 

obtained.  At 90% target confidence level, confidence-based reliability is selected as 

61.19% for G1 and 63.52% for G2, which are lower than the true reliabilities (63.91% for 

G1 and 69.97% for G2).  This implies that the proposed confidence-based method 

provides conservative reliability estimation.  In addition, the proposed method is 

compared with the output best-fit method.  In the output best-fit method, reliability is 
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calculated by fitting experimental output data to AKDE, without incorporating simulation 

model.  Table 7.4 compares reliabilities obtained using the proposed method, the output 

best-fit method, and the simulation-based method which uses best-fit input distribution 

model and the biased simulation model.  It is found that both the output best-fit method 

and the simulation-based method overestimate reliability compared to the true reliability.  

Therefore, it is emphasized that using either only simulation model or only physical test 

data does not provide confidence in the estimation of reliability.  On the other hand, the 

proposed confidence-based method can predict reliability with confidence and thus it can 

be right guidance to design product when it is applied to the RBDO process.  

 

Figure 7.8 CCDF of Reliability and Confidence Level Given 30 Input/20 Output Data 
(Left: Constraint 1 and Right: Constraint 2) 
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Table 7.4 Comparison of Reliability under Different Methods for 30 Input/20 Output 
Data 

Reliability 
Constraints 

G1 G2 

Confidence-based method 61.19% 63.52% 

Output best-fit method 67.36% 76.39% 

Simulation-based method 88.86% 93.48% 

True 63.91% 69.97% 

 

7.3.2. Data Case 2: Small Number of Input/Output Test 

Data 

Compared to data set in Section 7.3.1, the numbers of input and output test data 

are decreased to ten and five, respectively.  This case is closer to practical application 

than the data case 1.  To generate the small number of input data, only ten data for each 

of six variables is randomly drawn from the true input distribution in Table 7.2, which are 

plotted as blue cross as shown in Figure 7.9.  With such a small amount of data, the 

collected ten data do not well represent the true input distribution compared to the 

previous 20 input data.  For instance, most of ten data for force variable shown in Figure 

7.9 (a) are from the right tail of the true input distribution and thus they are biased.   

 

 



www.manaraa.com

109 
 

 
 

(a) Force     (b) Torsion 

(c) Angle     (d) Young’s modulus 

 

(e) Poisson’s ratio    (f) Yield strength 

Figure 7.9 Ten Input Data Randomly Drawn from True Input Distribution 
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To generate small number of output test data, only five test data are randomly 

drawn from the true output distribution for each constraint.  It is noted that the five data 

for constraint 2 are quite biased since all five data comes from the left tail of the true 

output distribution. In particular, one of them is drawn from the left tail end of the true 

output distribution.  As a result, it is anticipated that this biased data can lead to gross 

overestimation of reliability.     

(a) Constraint 1     (b) Constraint 2 

Figure 7.10 Five Output Test Data Randomly Drawn from True Output Distribution 

Given ten input data and biased model, biased simulation output distribution can 

be obtained as shown in Figure 7.11.  The corresponding simulation-based reliability can 

be evaluated as 93.04% for G1 and 96.06% for G2, which grossly overestimates the true 

reliabilities (63.91% for G1 and 69.97% for G2).  On the other hand, the proposed method 

generate 1000 possible reliabilities (nMCSh in Eq. (7-7) are set to 1000) and construct the 

CCDF of reliability as shown in Figure 7.12.  At 90% target confidence level, the 

confidence-based reliabilities are 52.81% for G1 and 65.13% for G2.  It is highlighted that 

the proposed confidence-based reliability is less (i.e., more conservative) than true 

reliability.  In addition, Table 7.5 summarizes the result of the proposed confidence 
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method and compares it with existing reliability estimation methods (output best-fit 

method and simulation-based method).  It is noted that output best-fit method provides 

the reliabilities of 67.65% for G1 and 95.03% for G2, which are overestimating true 

reliability.  In particular, as for constraint 2, the output best-fit reliability is very high, 

which could lead to a wrong decision to design product in the RBDO process.  This may 

be due to the biased data illustrated in Figure 7.10.  Also, simulation-based reliabilities 

overestimate reliability with well over than 90% reliabilities.  Therefore, it is concluded 

that both output best-fit method and simulation-based method cannot induce right 

decision for very small number of data.  Whereas, the proposed method yields 

conservative reliability estimation even with small number of data.   

 

Figure 7.11 Comparison of True Output PDF and Biased Simulation Output PDF 

(Left: Constraint 1 and Right: Constraint 2) 
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Figure 7.12 CCDF of Reliability and Confidence Level Given Ten Input/Five Output 
Data (Left: Constraint 1 and Right: Constraint 2) 

 

 

Table 7.5 Comparison of Reliability under Different Methods for Ten Input/Five Output 
Data 

Reliability 
Constraints 

G1 G2 

Confidence-based method 52.81% 65.13% 

Output best-fit method 67.65% 95.03% 

Simulation-based method 93.04% 96.06% 

True 63.91% 69.97% 
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7.3.3. Verification of Confidence Level 

In this section, it is checked whether the proposed confidence-based reliability 

satisfies the target confidence level.  In Section 5.1.2, the confidence level was 

demonstrated in the developed confidence-based model validation considering only 

limited number of physical output test data.  This section demonstrates the confidence 

level used in the proposed confidence-based reliability estimation that accounts for both 

insufficient input/output test data.  However, it is not easy to theoretically prove that the 

confidence-based reliability is conservative.  For this reason, the confidence level is 

numerically demonstrated by repeating 100 times of confidence-based reliability 

assessment with independently generated 100 sets of input/output test data.  Each set 

includes 30 input/20 output data which are randomly drawn from the true input 

distribution for each of six variables described in Table 7.2 and the true output 

distribution for two constraints, respectively.  It is noted that this 100 repeated tests have 

been carried out on the HPC system—Excalibur (30-50 nodes in parallel; each node has 

32 cores and 128 GB memory)—at the U.S. ARL because 100 trials require heavy 

computational time.  One confidence-based reliability assessment for 20 input/10 output 

data takes around 66 hours using 30 cores and 128 GB memory.  Thus, carrying out 100 

trials would not be easily achievable as it would take around 275 days in order to 

complete it.  On the other hand, using the ARL HPC, we have been able to successfully 

finish 100 trials within two weeks. 

 Figures 7.13  and 7.14 show the histograms of confidence-based reliabilities and 

reliabilities obtained using output best-fit method for 100 trials, respectively.  It can be 

noticed that, using the proposed confidence-based method, 89 trials for constraint 1 and 

95 trials for constrain 2 among 100 trials with different data sets are conservatively 

estimating the true reliability.  This implies that the proposed method satisfies 90% of 

target confidence level.  On the other hand, the output best-fit method does not provide 

enough confidence level because only 65 trials for constraint 1 and 67 trials for constraint 



www.manaraa.com

114 
 

 
 

2 are conservative reliability estimations.  Table 7.6 compares the reliabilities between 

confidence-based method and best-fit method.  The mean value, standard deviation, 

maximum, and minimum value of 100 confidence-based reliabilities at 90% target 

confidence level are summarized.  Those values can be compared with the mean value, 

standard deviation, maximum and minimum values of 100 output best-fit reliabilities.  It 

is worth noting that when using the best-fit method, maximum value (84.31% for 

constraint 1 and 92.01% for constraint 2) is much higher than the one for confidence-

based method (70.74% for constraint 1 and 78.54% for constraint 2).  Therefore, this 

indicates that output best-fit method can significantly overestimate reliability for certain 

data sets.    

 

 

Figure 7.13 Histogram of Confidence-Based Reliabilities Obtained by 100 Repeated 
Tests (Left: Constraint 1 and Right: Constraint 2) 



www.manaraa.com

115 
 

 
 

 

Figure 7.14 Histogram of Output Best-Fit Reliabilities Obtained by 100 Repeated Tests 
(Left: Constraint 1 and Right: Constraint 2) 

 

Table 7.6 Statistical Summary of the Results for 100 Trials of Confidence-Based Method 
and Output Best-Fit Method 

 

Confidence-based method at 

90% target confidence level 
Output Best-fit method 

Constraint 1 Constraint 2 Constraint 1 Constraint 2 

Mean 56.76% 62.31% 61.59% 67.36% 

Standard deviation 5.65% 4.79% 8.46% 7.71% 

Maximum 70.74% 78.54% 84.31% 92.01% 

Minimum 45.52% 50.93% 44.37% 51.25% 

True reliability 63.91% 69.97% 63.91% 69.97% 

# of successful trial 89 95 65 67 
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7.4. Numerical Test using 11-D Vehicle Side Impact 

Problem 

 

In this section, the proposed confidence-based reliability assessment is 

demonstrated using 11-D vehicle side impact problem (Gu et al., 2001; Youn, Choi, 

Yang & Gu, 2004).  Table 7.7 shows the true input distributions of 11 input random 

variables.  To represent a practical situation, it is assumed that we only know true input 

distributions for X1~X7 which are thicknesses of steel plates.  On the other hand, only 

limited numbers of data are available for material properties (X8~X9) and crash 

experiment properties (X10~X11).   

Table 7.7 Summary of Input Variable Information for 11-D Vehicle Side Impact Problem 

Description 
True input distribution 

Remark 
Type Mean STD 

X1 B-pillar inner 

Normal 

0.5 0.015 

True input 

distribution 

models are 

known 

X2 B-pillar reinforce 1.3 0.039 

X3 Floor side inner 0.5 0.015 

X4 Cross member 1.3 0.039 

X5 Door beam 1.1 0.033 

X6 Door belt line 1.5 0.045 

X7 Roof rail 0.5 0.015 

X8 Mat. B-pillar inner 
Log 

Normal 

0.345 0.0242 

Only ten limited 

number of data 

is given 

X9 
Mat. Floor side 

inner 0.192 0.0134 

X10 Barrier height 
Normal 

0 10 

X11 Barrier hitting 0 10 
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Out of ten constraints related to internal and regulated side impact requirements 

given in the reference paper (Youn, Choi, Yang & Gu, 2004), only three active 

constraints are used in this example as: 

Constraint 1: lower rib deflection – 32mm ≤ 0 

Constraint 2: pubic symphysis force – 4.0kN ≤ 0 

Constraint 3: velocity of front door at B-pillar – 15.7mm/ms ≤ 0 

Biased constraint Gi(x) is formulated by subtracting bias Bi(x) from true output model 

𝐺𝑖
𝑡𝑟𝑢𝑒(𝐱) as 𝐺𝑖(𝐱) = 𝐺𝑖

𝑡𝑟𝑢𝑒(𝐱) − 𝐵𝑖(𝐱).  The true output models (i.e., true physical 

output) are defined as 
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and biases for three constraints (included in the simulation model) are given by 
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To obtain the error level of the biased simulation model, the biased simulation model 

outputs have been compared with those obtained using the true model in Eq. (7-10).  As 

shown in Table 7.8, the error is around 10% of true model.  In this 11-D vehicle side 

impact problem, instead of using actual function of biased constraints, DKG surrogate 
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models (Song et al., 2013a; Zhao et al., 2011) have been generated using the biased 

constraints as CAE simulations at the design of experiment (DoE) points. 

Table 7.8 Accuracy of Biased Simulation Model for 11-D Vehicle Side Impact Problem 

 

 

Deterministic Output 

G1 G2 G3 

Biased simulation model (𝑎) 27.700 3.643 13.822 

True model (𝑏) 30.834 3.944 15.323 

Error (
𝑏−𝑎

𝑏
× 100) 10.16% 7.63% 9.80% 

 

Figure 7.15 20 Input Data Randomly Drawn From True Input Distribution for Each of 
Four Variables (X8~X11) 
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Similar to 9-D cantilever tube-shaped beam example in the Section 7.3, two 

different numbers of data cases – 1) 20 input/ten output data and 2) ten input/five output 

data – are studied.  In Case 1, 20 limited number of data for each of four variables 

(X8~X11) are randomly drawn from true input distribution to mimic testing as shown in 

Figure 7.15.  In addition, ten output data, which are randomly generated from true output 

distribution to mimic physical testing, are used for each constraint.  Figure 7.16 shows 

how ten data are distributed. 

Using the proposed confidence-based method, the CCDF of reliability is obtained 

as shown in Figure 7.17.  Total 1000 MCS samples are generated to construct the CCDF 

of reliability.  At 90% target confidence level, the confidence-based reliabilities are 

evaluated as 74.66% for G1, 66.40% for G2 and 70.98% for G3.  In addition, for the 

purpose of comparison, two other methods have been carried out: the simulation-based 

method and the output best-fit method.  Hence, the simulation model is not used for the 

output best-fit method.  Table 7.9 lists confidence-based reliability, output best-fit 

reliability and simulation-based reliability.  It can be found that both the simulation-based 

reliability and output best-fit reliability overestimate the true reliability.  On the other 

hand, the confidence-based reliability is conservative compared to the true reliability.  In 

particular, both simulation-based reliability and output best-fit reliability for G2 and G3 

are very close to 100% which could mislead to wrong decision on product design.  

However, the developed method can prevent the wrong decision by providing 

conservative estimation of the reliability. 
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Figure 7.16 Ten Output Data Randomly Drawn From True Output Distribution (Top-
Left: Constraint 1, Top-Right: Constraint 2, and Bottom: Constraint 3) 
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Figure 7.17 CCDF of Reliability and Confidence-Based Reliability Given 20 Input/Ten 
Output Data (Top-Left: Constraint 1, Top-Right: Constraint 2, and Bottom: 

Constraint 3) 

Table 7.9  Comparison of Different Methods in the Estimation of Reliability Given 20 
Input/Ten Output Data 

Reliability 
Constraints 

G1 G2 G3 

Confidence-based method 74.66% 66.40% 70.98% 

Output best-fit method 100.00% 96.25% 99.98% 

Simulation-based method 98.56% 100.00% 99.68% 

True 85.46% 84.88% 95.55% 
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In Case 2 of experimental situation, numbers of input data for X8~X11 are 

decreased to ten, which are randomly drawn from true input distribution as shown in 

Figure 7.18.  Also, only five output data for each constraint are considered, which are 

plotted in Figure 7.19.  Using the proposed confidence-based reliability assessment, the 

CCDF of reliability can be obtained as shown in Figure 7.20.  At the 90% target 

confidence level, confidence-based reliability is obtained as 61.20% for G1, 62.05% for 

G2, and 59.00% for G3, which significantly underestimate true reliabilities.  It is worth 

noting that the confidence-based reliability for smaller number of data is more 

conservative than the one (74.66% for G1, 66.40% for G2 and 70.98% for G3) for Case 1 

(20 input/ten output data).  Because the numbers of data are smaller, the uncertainty 

becomes larger.  As a result, it is found that the possible range of reliability (i.e., the 

support size of CCDF of reliability) become wider than that of reliability for Case 1, 

which can be observed from the horizontal axes in Figures 7.17  and 7.20 .  Table 7.10 

shows that both output best-fit method and simulation-based method significantly 

overestimate the reliability; while the proposed confidence-based method conservatively 

estimates the reliability.        
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Figure 7.18 Ten Input Data Randomly Drawn From True Input Distribution for Each of 
Four Variable (X8~X11) 
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Figure 7.19 Five Output Data Randomly Drawn From True Output Distribution (Top-
Left: Constraint 1, Top-Right: Constraint 2, and Bottom: Constraint 3) 
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Figure 7.20 CCDF of Reliability and Confidence-Based Reliability Distribution (Top-
Left: Constraint 1, Top-Right: Constraint 2, and Bottom: Constraint 3) 

Table 7.10 Comparison of Different Methods in the Estimation of Reliability Given Ten 
Input/Five Output Data 

Reliability 
Constraints 

G1 G2 G3 

Confidence-based method 61.20% 62.05% 59.00% 

Output best-fit method 91.19% 99.93% 99.61% 

Simulation-based method 99.50% 99.93% 99.96% 

True 85.46% 84.88% 95.55% 
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In this 11-D vehicle side impact problem, we asked the same question whether the 

proposed method truly satisfies target confidence level.  Therefore, 100 times of 

confidence-based reliability assessment have been carried out with independenlty drawn 

100 sets of input/output test data.  Each set contains ten input test data and five output test 

data, which are randomly drawn from true input and output distributions, respectively.  A 

comparison study between two methods, the proposed confidence-based method and 

output best-fit method, has been carried out.  In the proposed method, target confidence 

level is set to 90%.  Figure 7.21 and Figure 7.22 illustrate the histograms of confidence-

based reliability and output best-fit reliability for 100 trials, respectively.  Based on the 

histograms obtained for both methods, we can calculate how many trials conservatively 

estimate (less than) true reliability among 100 trials.  The confidence-based method 

satisfies target confidence level of 90% − 100% for G1, G2 and G3, whereas output best-

fit method does not provide enough confidence − 63% for G1, 50% for G2 and 54% for 

G3.  In addition, it can be noticed that the right-tail of histogram for output best-fit 

method in Figure 7.22 is heavier than one for the confidence-based method in Figure 

7.21.  This indicates that many data sets yield almost 100% reliability estimation when 

using output best-fit method.  Thus, it is demonstrated that by utilizing either only 

physical test data or simulation model, we cannot build enough confidence in the 

estimation of reliability.  In contrast, the proposed method can prevent the dangerous 

overestimation of reliability.  In conclusion, by using both physical test data and 

simulation model, the proposed method can save cost and provide conservative reliability 

estimation.  On the other hand, the confidence-based method seemed to yield too 

conservative estimation of the reliability, which needs to be further investigated. 
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Figure 7.21 Histogram of Confidence-Based Reliabilities Obtained by 100 Repeated 
Tests (Top-Left: Constraint 1, Top-Right: Constraint 2 and Bottom: Constraint 

3) 
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Figure 7.22 Histogram of Output Best-Fit Reliabilities Obtained by 100 Repeated Tests 
(Top-Left: Constraint 1, Top-Right: Constraint 2 and Bottom: Constraint 3) 

 

 

 

 

 



www.manaraa.com

129 
 

 
 

CHAPTER 8                                                                                         

CONCLUSIONS AND FUTURE WORK 

In this study, we have developed confidence-based model validation for reliability 

estimation when experimental output data is insufficient.  The proposed confidence-based 

model validation takes the uncertainty induced by insufficient experimental output data 

as well as inherent input variability into consideration to conservatively estimate the 

probability of failure.  The distribution (CDF) of probability of failure, which is an 

outcome of the uncertainty induced by insufficient experimental output data, has been 

quantified using the sampling-based Bayesian analysis.  After that, the probability of 

failure and target output PDF are selected at the user-specified target confidence level.  

Then, the validated simulation model can be obtained using model bias correction by 

matching the simulation output PDF with the confidence-based target output PDF.  

Furthermore, it has been demonstrated that the validated simulation model using the 

proposed confidence-based model validation satisfies the target confidence level and 

converges to the true model as the experimental output data size increases.   

Next, the developed confidence-based model validation has been integrated into 

the sampling-based RBDO process, which assures a reliable and conservative optimum 

design with certain probability (target confidence level).  To handle the uncertainty, the 

RBDO constraint has been conservatively estimated at a target confidence level to 

achieve the conservativeness of the RBDO optimum design.  Furthermore, the moving-

target problem that occurs in the RBDO process with model validation has been 

discussed.  It has been numerically demonstrated that, when enough experimental output 

data is given, the moving-target problem can be solved.  To resolve the moving-target 

problem for insufficient experimental output data, a practical RBDO procedure using 

confidence-based model validation has been proposed.  It has been demonstrated that the 

practical RBDO procedure can provide a conservative and reliable optimum design by 
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using experimental output data at only a few design configurations.  Therefore, the 

effectiveness and efficiency of the practical RBDO procedure using confidence-based 

model validation has been verified.  The practical RBDO has been applied to two types of 

biased models: (1) non-conservative and (2) conservative simulation models, 

respectively.  For the non-conservative simulation model, the conventional RBDO 

optimum does not satisfy the target probability of failure, which leads to unreliable 

design.  However, the proposed RBDO can make a conservative and reliable design.  As 

for the conservative simulation model, two different amounts of bias have been tested: (1) 

a small biased model and (2) a significantly biased model.  For the conventional RBDO 

optimum design using a small biased model, the proposed RBDO provides a more 

conservative and reliable design than the conventional RBDO as the uncertainty is 

induced by insufficient experimental output data.  On the other hand, when the simulation 

model is significantly biased, the proposed RBDO makes a less conservative and better 

reliable optimum design than the conventional RBDO design.  In all cases, the proposed 

RBDO using confidence-based model validation aims to provide the designer with 

confidence that the design produced would be reliable even with insufficient 

experimental output data. 

Aforementioned confidence-based model validation and its integration with 

RBDO using confidence-based validation assume that input variability is precisely 

known (i.e., no parameter uncertainty), which may not be real practical situation.  Thus, 

new confidence-based reliability assessment that accounts for input parameter uncertainty 

as well as model bias when limited number of input/output is given has been developed.  

When a small amount of input data is available due to a limited number of coupon tests, 

the true input distribution model cannot be accurately obtained.  Thus, there exists the 

uncertainty due to limited number of input data, the uncertainty due to limited number of 

experimental output data, as well as the biased simulation model.  To combine all 

uncertainties due to limited number of input/output data and model bias, hierarchical 



www.manaraa.com

131 
 

 
 

Bayesian analysis is carried out to obtain the uncertainty distribution (CCDF) of 

reliability that can provide confidence level of reliability.  Thus, the proposed confidence-

based reliability method provides the conservative reliability estimation at the target 

confidence level that engineers set.  It is numerically demonstrated that the proposed 

method satisfies the target confidence level that the true reliability is larger than the 

estimated reliability.  The proposed method can be applied to many practical engineering 

problems because their experimental situation necessitates reliability assessment with 

confidence. 

In the future, the developed confidence-based reliability method needs to be tested 

using various industry applications.  Second, output PDF modeling method can be further 

improved because AKDE that is chosen in this study has a limitation.  Since there exists 

only one unknown parameter, bandwidth, the obtained confidence-based target PDF is 

highly dominated by bandwidth.   In addition, the proposed reliability assessment method 

can be further extended to obtain validated simulation model by correcting model bias.  

Then, the obtained model bias can provide useful information that how much simulation 

model is biased to engineers.   
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